Read More
Date: 13-10-2020
936
Date: 11-11-2019
688
Date: 18-7-2020
490
|
is the smallest prime such that , , or is divisible by , where is the primorial of . Ashbacher (1996) shows that only exists
1. If there are no square or higher powers in the factorization of , or
2. If there exists a prime such that , where is the smallest power contained in the factorization of .
Therefore, does not exist for the squareful numbers , 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, ... (OEIS A013929). The first few values of , where defined, are 2, 2, 2, 3, 3, 3, 5, 7, ... (OEIS A046026).
REFERENCES:
Ashbacher, C. "A Note on the Smarandache Near-To-Primordial Function." Smarandache Notions J. 7, 46-49, 1996.
Mudge, M. R. "The Smarandache Near-To-Primorial Function." Abstracts of Papers Presented to the Amer. Math. Soc. 17, 585, 1996.
Sloane, N. J. A. Sequences A013929 and A046026 in "The On-Line Encyclopedia of Integer Sequences."
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|