Read More
Date: 24-4-2020
![]()
Date: 8-12-2020
![]()
Date: 8-7-2020
![]() |
is the smallest prime such that
,
, or
is divisible by
, where
is the primorial of
. Ashbacher (1996) shows that
only exists
1. If there are no square or higher powers in the factorization of , or
2. If there exists a prime such that
, where
is the smallest power contained in the factorization of
.
Therefore, does not exist for the squareful numbers
, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, ... (OEIS A013929). The first few values of
, where defined, are 2, 2, 2, 3, 3, 3, 5, 7, ... (OEIS A046026).
REFERENCES:
Ashbacher, C. "A Note on the Smarandache Near-To-Primordial Function." Smarandache Notions J. 7, 46-49, 1996.
Mudge, M. R. "The Smarandache Near-To-Primorial Function." Abstracts of Papers Presented to the Amer. Math. Soc. 17, 585, 1996.
Sloane, N. J. A. Sequences A013929 and A046026 in "The On-Line Encyclopedia of Integer Sequences."
|
|
4 أسباب تجعلك تضيف الزنجبيل إلى طعامك.. تعرف عليها
|
|
|
|
|
أكبر محطة للطاقة الكهرومائية في بريطانيا تستعد للانطلاق
|
|
|
|
|
أصواتٌ قرآنية واعدة .. أكثر من 80 برعماً يشارك في المحفل القرآني الرمضاني بالصحن الحيدري الشريف
|
|
|