Read More
Date: 16-1-2020
![]()
Date: 10-2-2020
![]()
Date: 31-8-2020
![]() |
A number is called
-hyperperfect if
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
where is the divisor function and the summation is over the proper divisors with
. Rearranging gives
![]() |
(3) |
Taking gives the usual perfect numbers.
If is an odd integer, and
and
are prime, then
is
-hyperperfect. McCranie (2000) conjectures that all
-hyperperfect numbers for odd
are in fact of this form. Similarly, if
and
are distinct odd primes such that
for some integer
, then
is
-hyperperfect. Finally, if
and
is prime, then if
is prime for some
< then
is
-hyperperfect (McCranie 2000).
The first few hyperperfect numbers (excluding perfect numbers) are 21, 301, 325, 697, 1333, ... (OEIS A007592). If perfect numbers are included, the first few are 6, 21, 28, 301, 325, 496, ... (OEIS A034897), whose corresponding values of are 1, 2, 1, 6, 3, 1, 12, ... (OEIS A034898). The following table gives the first few
-hyperperfect numbers for small values of
. McCranie (2000) has tabulated all hyperperfect numbers less than
.
![]() |
OEIS | ![]() |
1 | A000396 | 6 ,28, 496, 8128, ... |
2 | A007593 | 21, 2133, 19521, 176661, ... |
3 | 325, ... | |
4 | 1950625, 1220640625, ... | |
6 | A028499 | 301, 16513, 60110701, ... |
10 | 159841, ... | |
11 | 10693, ... | |
12 | A028500 | 697, 2041, 1570153, 62722153, ... |
REFERENCES:
Guy, R. K. "Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers." §B2 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 45-53, 1994.
McCranie, J. S. "A Study of Hyperperfect Numbers." J. Integer Sequences 3, No. 00.1.3, 2000. https://www.math.uwaterloo.ca/JIS/VOL3/VOL3/mccranie.
Minoli, D. "Issues in Nonlinear Hyperperfect Numbers." Math. Comput. 34, 639-645, 1980.
Roberts, J. The Lure of the Integers. Washington, DC: Math. Assoc. Amer., p. 177, 1992.
Sloane, N. J. A. Sequences A000396/M4186, A007592/M5113, A007593/M5121, A028499, A028500, A034897, and A034898 in "The On-Line Encyclopedia of Integer Sequences."
te Riele, H. J. J. "Hyperperfect Numbers with Three Different Prime Factors." Math. Comput. 36, 297-298, 1981.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
العتبة العباسية المقدسة تقدم دعوة إلى كلية مزايا الجامعة للمشاركة في حفل التخرج المركزي الخامس
|
|
|