Read More
Date: 27-11-2019
560
Date: 9-12-2020
1165
Date: 11-6-2020
645
|
Any composite number with for all prime divisors of . is a Giuga number iff
(1) |
where is the totient function and iff
(2) |
is a Giuga number iff
(3) |
where is a Bernoulli number and is the totient function. Every counterexample to Giuga's conjecture is a contradiction to Agoh's conjecture and vice versa. The smallest known Giuga numbers are 30 (3 factors), 858, 1722 (4 factors), 66198 (5 factors), 2214408306, 24423128562 (6 factors), 432749205173838, 14737133470010574, 550843391309130318 (7 factors),
244197000982499715087866346, 554079914617070801288578559178
(8 factors), ... (OEIS A007850).
It is not known if there are an infinite number of Giuga numbers. All the above numbers have sum minus product equal to 1, and any Giuga number of higher order must have at least 59 factors. The smallest odd Giuga number must have at least nine prime factors.
REFERENCES:
Borwein, D.; Borwein, J. M.; Borwein, P. B.; and Girgensohn, R. "Giuga's Conjecture on Primality." Amer. Math. Monthly 103, 40-50, 1996.
Butske, W.; Jaje, L. M.; and Mayernik, D. R. "The Equation , Pseudoperfect Numbers, and Partially Weighted Graphs." Math. Comput. 69, 407-420, 1999.
Kellner, B. C. Über irreguläre Paare höherer Ordnungen. Diplomarbeit. Göttingen, Germany: Mathematischen Institut der Georg August Universität zu Göttingen, 2002. https://www.bernoulli.org/~bk/irrpairord.pdf.
Kellner, B. C. "The Equivalence of Giuga's and Agoh's Conjectures." Preprint. 10 July 2003. https://www.bernoulli.org/~bk/equivalence.pdf.
Sloane, N. J. A. Sequence A007850 in "The On-Line Encyclopedia of Integer Sequences."
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|