المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24


Distinct Prime Factors  
  
1366   02:44 صباحاً   date: 12-9-2020
Author : Abramowitz, M. and Stegun, I. A.
Book or Source : Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
Page and Part : ...


Read More
Date: 11-1-2021 756
Date: 15-9-2020 1405
Date: 19-11-2020 905

Distinct Prime Factors

DistinctPrimeFactors

The distinct prime factors of a positive integer n>=2 are defined as the omega(n) numbers p_1, ..., p_(omega(n)) in the prime factorization

 n=p_1^(a_1)p_2^(a_2)...p_(omega(n))^(a_(omega(n)))

(1)

(Hardy and Wright 1979, p. 354).

A list of distinct prime factors of a number n can be computed in the Wolfram Language using FactorInteger[n][[All, 1]], and the number omega(n) of distinct prime factors is implemented as PrimeNu[n].

The first few values of omega(n) for n=1, 2, ... are 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, ... (OEIS A001221; Abramowitz and Stegun 1972, Kac 1959). This sequence is given by the inverse Möbius transform of {chi_P(n)}, where chi_P is the characteristic function of the prime numbers (Sloane and Plouffe 1995, p. 22). The prime factorizations and distinct prime factors of the first few positive integers are listed in the table below.

n prime factorization omega(n) distinct prime factors (A027748)
1 -- 0 --
2 2 1 2
3 3 1 3
4 2^2 1 2
5 5 1 5
6 2·3 2 2, 3
7 7 1 7
8 2^3 1 2
9 3^2 1 3
10 2·5 2 2, 5
11 11 1 11
12 2^2·3 2 2, 3
13 13 1 13
14 2·7 2 2, 7
15 3·5 2 3, 5
16 2^4 1 2

The numbers consisting only of distinct prime factors are precisely the squarefree numbers.

A sum involving omega(n) is given by

 sum_(n=1)^infty(2^(omega(n)))/(n^s)=(zeta^2(s))/(zeta(2s))

(2)

for s>1 (Hardy and Wright 1979, p. 255).

The average order of omega(n) is

 omega(n)∼lnlnn

(3)

(Hardy 1999, p. 51). More precisely,

 omega(n)∼lnlnn+B_1+sum_(k=1)^infty(-1+sum_(j=0)^(k-1)(gamma_j)/(j!))((k-1)!)/((lnn)^k)

(4)

(Diaconis 1976, Knuth 2000, Diaconis 2002, Finch 2003, Knuth 2003), where B_1 is the Mertens constant and gamma_j are Stieltjes constants. Furthermore, the variance is given by

(5)

where

= B_1-t-1/6pi^2

(6)

= -1.83568427...

(7)

(OEIS A091588), where

 t=sum_(k=1)^infty1/(p_k^2)=0.452247...

(8)

(OEIS A085548) is the prime zeta function P(2) (Finch 2003). The coefficients c_1 and c_2 are given by the sums

c_1 = gamma-1+2sum_(k=1)^(infty)(lnp_k)/(p_k(p_k-1))

(9)

=

(10)

= 1.0879488865...

(11)

c_2 = -gamma_1-(gamma-1)[gamma+2sum_(k=1)^(infty)(lnp_k)/(p_k(p_k-1))]+2sum_(k=1)^(infty)((2p_k-1)(lnp_k)^2)/(2p_k(p_k-1)^2)

(12)

= 3.3231293098...

(13)

(Diaconis 1976, Knuth 2000, Diaconis 2002, Finch 2003, Knuth 2003), where

u = sum_(k=1)^(infty)(lnp_k)/(p_k(p_k-1))

(14)

= 0.755366...

(15)

v = sum_(k=1)^(infty)((2p_k-1)(lnp_k)^2)/(2p_k(p_k-1)^2)

(16)

= 1.183780...

(17)

(Finch 2003).

If n is a primorial, then

 omega(n)∼(lnn)/(lnlnn)

(18)

(Hardy and Wright 1979, p. 355).

The summatory function of omega(k) is given by

 sum_(k=2)^nomega(k)=nlnlnn+B_1n+O(n/(lnn))

(19)

where B_1 is the Mertens constant (Hardy 1999, p. 57), the o(n) term (Hardy and Ramanujan 1917; Hardy and Wright 1979, p. 355) has been rewritten in a more explicit form, and o(x) and O(x) are asymptotic notation. The first few values of the summatory function are 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 17, 19, 20, 21, ... (OEIS A013939). In addition,

 sum_(k=2)^n[omega(k)]^2=n(lnlnn)^2+O(nlnlnn)

(20)

(Hardy and Wright 1979, p. 357).

The first few numbers u_n which are products of an odd number of distinct prime factors (Hardy 1999, p. 64; Ramanujan 2000, pp. xxiv and 21) are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42, 43, 47, ... (OEIS A030059). u_n satisfies

 sum_(n=1)^infty1/(u_n^s)=1/2[(zeta(s))/(zeta(2s))-zeta(s)]

(21)

(Hardy 1999, pp. 64-65). In addition, if U(n) is the number of u_k with k<=n, then

 U(x)∼(3x)/(pi^2)

(22)

(Hardy 1999, pp. 64-65).


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 844, 1972.

Diaconis, P. "Asymptotic Expansions for the Mean and Variance of the Number of Prime Factors of a Number n." Dept. Statistics Tech. Report 96, Stanford, CA: Stanford University, 1976.

Diaconis, P. "G. H. Hardy and Probability???" Bull. London Math. Soc. 34, 385-402, 2002.

Finch, S. "Two Asymptotic Series." December 10, 2003. https://algo.inria.fr/bsolve/.

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.

Hardy, G. H. and Ramanujan, S. "The Normal Number of Prime Factors of a Number n." Quart. J. Math. 48, 76-92, 1917.

Hardy, G. H. and Wright, E. M. "The Number of Prime Factors of n" and "The Normal Order of omega(n) and Omega(n)." §22.10 and 22.11 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 354-358, 1979.

Kac, M. Statistical Independence in Probability, Analysis and Number Theory. Washington, DC: Math. Assoc. Amer., p. 64, 1959.

Knuth, D. E. Selected Papers on Analysis of Algorithms. Stanford, CA: CSLI Publications, pp. 338-339, 2000.

Knuth, D. E. "Asymptotics for E_n(Omega) and Var_n(Omega)." Cited by Finch (2003). Unpublished note, 2003.

Ramanujan, S. Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., 2000.

Sloane, N. J. A. Sequences A001221/M0056, A013939, A027748, A085548, and A091588 in "The On-Line Encyclopedia of Integer Sequences."

Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.