المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
حق مالك الضمان في الاحتفاظ بملكية العين المخصصة للضمان
2025-04-05
حق المالك في إيجار العين المخصصة للضمان
2025-04-05
Farsi (Samiian 1994; Ghomeshi 1997; Ghozati 2000; Kahnemuyipour 2000)
2025-04-05
The Ezafe construction
2025-04-05
Ezafe and the deep position on nominal modifiers Introduction
2025-04-05
الايمان عند الهلاك غير مقبول
2025-04-05

النقائض .. نشأتها وقيمتها
25-12-2015
جغرافية العمران الحضري
27-3-2017
أصول التفسير
2024-09-02
صناعة الجبن المعامل
25-1-2017
أبو العباس الراضي بالله والجواري
25-1-2019
المزارع الخزينة الأولية Primary Stock Cultures
20-9-2019

Multiplicative Character  
  
676   04:29 مساءً   date: 13-8-2020
Author : Knapp, A. W.
Book or Source : "Group Representations and Harmonic Analysis, Part II." Not. Amer. Math. Soc. 43
Page and Part : 537-549


Read More
Date: 21-9-2020 1259
Date: 25-8-2020 2153
Date: 19-1-2021 1057

Multiplicative Character

A continuous homomorphism of a group into the nonzero complex numbers. A multiplicative character omega gives a group representation on the one-dimensional space C of complex numbers, where the group representation action by g in G is multiplication by omega(g). A multiplicative character is unitary if it has absolute value 1 everywhere.


REFERENCES:

Knapp, A. W. "Group Representations and Harmonic Analysis, Part II." Not. Amer. Math. Soc. 43, 537-549, 1996.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.