المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9764 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
الشبوي (مسك الليل)
2024-07-08
الوجدان في نظر علماء النفس
2024-07-08
نظريّة الوجدان
2024-07-08
الفرق بين الميل والإرادة
2024-07-08
نظريّة الفلاسفة المسلمين
2024-07-08
نبات القديفة (مخملية)
2024-07-08

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
الجملة الإنشائية وأقسامها
26-03-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016

Diophantine Equation  
  
1292   04:04 مساءً   date: 20-5-2020
Author : Alpern, D
Book or Source : "Sums of Powers." https://www.alpertron.com.ar/SUMPOWER.HTM.
Page and Part : ...


Read More
Date: 3-2-2021 967
Date: 6-5-2020 1124
Date: 6-9-2020 854

Diophantine Equation

A Diophantine equation is an equation in which only integer solutions are allowed.

Hilbert's 10th problem asked if an algorithm existed for determining whether an arbitrary Diophantine equation has a solution. Such an algorithm does exist for the solution of first-order Diophantine equations. However, the impossibility of obtaining a general solution was proven by Yuri Matiyasevich in 1970 (Matiyasevich 1970, Davis 1973, Davis and Hersh 1973, Davis 1982, Matiyasevich 1993) by showing that the relation n=F_(2m) (where F_(2m) is the (2m)th Fibonacci number) is Diophantine. More specifically, Matiyasevich showed that there is a polynomial P in nm, and a number of other variables xyz, ... having the property that n=F_(2m) iff there exist integers xyz, ... such that P(n,m,x,y,z,...)=0.

Matiyasevich's result filled a crucial gap in previous work by Martin Davis, Hilary Putnam, and Julia Robinson. Subsequent work by Matiyasevich and Robinson proved that even for equations in thirteen variables, no algorithm can exist to determine whether there is a solution. Matiyasevich then improved this result to equations in only nine variables (Jones and Matiyasevich 1982).

Ogilvy and Anderson (1988) give a number of Diophantine equations with known and unknown solutions.

A linear Diophantine equation (in two variables) is an equation of the general form

 ax+by=c,

(1)

where solutions are sought with ab, and c integers. Such equations can be solved completely, and the first known solution was constructed by Brahmagupta. Consider the equation

 ax+by=1.

(2)

Now use a variation of the Euclidean algorithm, letting a=r_1 and b=r_2

r_1 = q_1r_2+r_3

(3)

r_2 = q_2r_3+r_4

(4)

r_(n-3) = q_(n-3)r_(n-2)+r_(n-1)

(5)

r_(n-2) = q_(n-2)r_(n-1)+1.

(6)

Starting from the bottom gives

1 = r_(n-2)-q_(n-2)r_(n-1)

(7)

r_(n-1) = r_(n-3)-q_(n-3)r_(n-2),

(8)

so

1 = r_(n-2)-q_(n-2)(r_(n-3)-q_(n-3)r_(n-2))

(9)

= -q_(n-2)r_(n-3)+(1+q_(n-2)q_(n-3))r_(n-2).

(10)

Continue this procedure all the way back to the top.

Take as an example the equation

 1027x+712y=1

(11)

and apply the algorithm above to obtain

  1027 = 712·  1+  315;  712 = 315·  2+  82;  315 = 82·  3+  69;  82 = 69·  1+  13;  69 = 13·  5+  4;  13 = 4·  3+  1;    |; |; |; |; |; v;     1= -165·  1027+  238·  712; 1= 73·  712-  165·  315; 1= -19·  315+  73·  82; 1= 16·  82-  19·  69; 1= -3·  69+  16·  13; 1= 1·  13-  3·  4; 1= 0·  4+  1·  1^; |; |; |; |; |; |

(12)

The solution is therefore x=-165y=238.

The above procedure can be simplified by noting that the two leftmost columns are offset by one entry and alternate signs, as they must since

1 = -A_(i+1)r_i+A_ir_(i+1)

(13)

r_(i+1) = r_(i-1)-r_iq_(i-1)

(14)

1 = A_ir_(i-1)-(A_iq_(i-1)+A_(i+1)),

(15)

so the coefficients of r_(i-1) and r_(i+1) are the same and

 A_(i-1)=-(A_iq_(i-1)+A_(i+1)).

(16)

Repeating the above example using this information therefore gives

  1027 = 712·  1+  315;  712 = 315·  2+  82;  315 = 82·  3+  69;  82 = 69·  1+  13;  69 = 13·  5+  4;  13 = 4·  3+  1;    |; |; |; |; |; v;     (-)  165·  1+  73 = 238; (+)  73·  2+  19 = 165; (-)  19·  3+  16 = 73; (+)  16·  1+  3 = 19; (-)  3·  5+  1 = 16; (+)  1·  3+  0 = 3; (-)  0·  1+  1 = 1^; |; |; |; |; |; |

(17)

and we recover the above solution.

Call the solutions to

 ax+by=1

(18)

x_0 and y_0. If the signs in front of ax or by are negative, then solve the above equation and take the signs of the solutions from the following table:

equation x y
ax+by=1 x_0 y_0
ax-by=1 x_0 -y_0
-ax+by=1 -x_0 y_0
-ax-by=1 -x_0 -y_0

In fact, the solution to the equation

 ax-by=1

(19)

is equivalent to finding the continued fraction for a/b, with a and b relatively prime (Olds 1963). If there are n terms in the fraction, take the (n-1)th convergent p_(n-1)/q_(n-1). But

 p_nq_(n-1)-p_(n-1)q_n=(-1)^n,

(20)

so one solution is x_0=(-1)^nq_(n-1)y_0=(-1)^np_(n-1), with a general solution

x = x_0+kb

(21)

y = y_0+ka

(22)

with k an arbitrary integer. The solution in terms of smallest positive integers is given by choosing an appropriate k.

Now consider the general first-order equation of the form

 ax+by=c.

(23)

The greatest common divisor d=GCD(a,b) can be divided through yielding

(24)

where , and . If dc, then  is not an integer and the equation cannot have a solution in integers. A necessary and sufficient condition for the general first-order equation to have solutions in integers is therefore that d|c. If this is the case, then solve

(25)

and multiply the solutions by , since

(26)

D. Wilson has compiled a list of the smallest nth powers of positive integers that are the sums of the nth powers of distinct smaller positive integers. The first few are 3, 5, 6, 15, 12, 25, 40, ...(OEIS A030052):

3^1 = 1^1+2^1

(27)

5^2 = 3^2+4^2

(28)

6^3 = 3^3+4^3+5^3

(29)

15^4 = 4^4+6^4+8^4+9^4+14^4

(30)

12^5 = 4^5+5^5+6^5+7^5+9^5+11^5

(31)

25^6 = 1^6+2^6+3^6+5^6+6^6+7^6+8^6+9^6+10^6+12^6+13^6+15^6+16^6+17^6+18^6+23^6

(32)

40^7 = 1^7+3^7+5^7+9^7+12^7+14^7+16^7+17^7+18^7+20^7+21^7+22^7+25^7+28^7+39^7

(33)

84^8 = 1^8+2^8+3^8+5^8+7^8+9^8+10^8+11^8+12^8+13^8+14^8+15^8+16^8+17^8+18^8+19^8+21^8+23^8+24^8+25^8+26^8+27^8+29^8+32^8+33^8+35^8+37^8+38^8+39^8+41^8+42^8+43^8+45^8+46^8+47^8+48^8+49^8+51^8+52^8+53^8+57^8+58^8+59^8+61^8+63^8+69^8+73^8

(34)

47^9 = 1^9+2^9+4^9+7^9+11^9+14^9+15^9+18^9+26^9+27^9+30^9+31^9+32^9+33^9+36^9+38^9+39^9+43^9

(35)

63^(10) = 1^(10)+2^(10)+4^(10)+5^(10)+6^(10)+8^(10)+12^(10)+15^(10)+16^(10)+17^(10)+20^(10)+21^(10)+25^(10)+26^(10)+27^(10)+28^(10)+30^(10)+36^(10)+37^(10)+38^(10)+40^(10)+51^(10)+62^(10).

(36)


REFERENCES:

Alpern, D. "Sums of Powers." https://www.alpertron.com.ar/SUMPOWER.HTM.

Bashmakova, I. G. Diophantus and Diophantine Equations. Washington, DC: Math. Assoc. Amer., 1997.

Beiler, A. H. Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966.

Carmichael, R. D. The Theory of Numbers, and Diophantine Analysis. New York: Dover, 1959.

Courant, R. and Robbins, H. "Continued Fractions. Diophantine Equations." §2.4 in Supplement to Ch. 1 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 49-51, 1996.

Davis, M. "Hilbert's Tenth Problem is Unsolvable." Amer. Math. Monthly 80, 233-269, 1973.

Davis, M. and Hersh, R. "Hilbert's 10th Problem." Sci. Amer. 229, 84-91, Nov. 1973.

Davis, M. "Hilbert's Tenth Problem is Unsolvable." Appendix 2 in Computability and Unsolvability. New York: Dover, 1999-235, 1982.

Dickson, L. E. "Linear Diophantine Equations and Congruences." Ch. 2 in History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, pp. 41-99, 2005.

dmoz. "Equal Sums of Like Powers." https://dmoz.org/Science/Math/Number_Theory/Diophantine_Equations/Equal_Sums_of_Like_Powers/.

Dörrie, H. "The Fermat-Gauss Impossibility Theorem." §21 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 96-104, 1965.

Ekl, R. L. "New Results in Equal Sums of Like Powers." Math. Comput. 67, 1309-1315, 1998.

Guy, R. K. "Diophantine Equations." Ch. D in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 139-198, 1994.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.

Hunter, J. A. H. and Madachy, J. S. "Diophantos and All That." Ch. 6 in Mathematical Diversions. New York: Dover, pp. 52-64, 1975.

Ireland, K. and Rosen, M. "Diophantine Equations." Ch. 17 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 269-296, 1990.

Jones, J. P. and Matiyasevich, Yu. V. "Exponential Diophantine Representation of Recursively Enumerable Sets." Proceedings of the Herbrand Symposium, Marseilles, 1981. Amsterdam, Netherlands: North-Holland, pp. 159-177, 1982.

Lang, S. Introduction to Diophantine Approximations, 2nd ed. New York: Springer-Verlag, 1995.

Matiyasevich, Yu. V. "Solution of the Tenth Problem of Hilbert." Mat. Lapok 21, 83-87, 1970.

Matiyasevich, Yu. V. Hilbert's Tenth Problem. Cambridge, MA: MIT Press, 1993. https://www.informatik.uni-stuttgart.de/ifi/ti/personen/Matiyasevich/H10Pbook/.

Meyrignac, J.-C. "Computing Minimal Equal Sums of Like Powers." https://euler.free.fr/.

Mordell, L. J. Diophantine Equations. New York: Academic Press, 1969.

Nagell, T. "Diophantine Equations of First Degree." §10 in Introduction to Number Theory. New York: Wiley, pp. 29-32, 1951.

Ogilvy, C. S. and Anderson, J. T. "Diophantine Equations." Ch. 6 in Excursions in Number Theory. New York: Dover, pp. 65-83, 1988.

Olds, C. D. Ch. 2 in Continued Fractions. New York: Random House, 1963.

Sloane, N. J. A. Sequence A030052 in "The On-Line Encyclopedia of Integer Sequences."

Weisstein, E. W. "Books about Diophantine Equations." https://www.ericweisstein.com/encyclopedias/books/DiophantineEquations.html.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.