Read More
Date: 21-11-2019
![]()
Date: 13-10-2020
![]()
Date: 12-10-2020
![]() |
Somos's quadratic recurrence constant is defined via the sequence
![]() |
(1) |
with . This has closed-form solution
![]() |
(2) |
where is a polylogarithm,
is a Lerch transcendent. The first few terms are 1, 2, 12, 576, 1658880, 16511297126400, ... (OEIS A052129). The terms of this sequence have asymptotic growth as
![]() |
(3) |
(OEIS A116603; Finch 2003, p. 446, term corrected), where
is known as Somos's quadratic recurrence constant. Here, the generating function
in
satisfies the functional equation
![]() |
(4) |
Expressions for include
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
(OEIS A112302; Ramanujan 2000, p. 348; Finch 2003, p. 446; Guillera and Sondow 2005).
Expressions for include
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
(OEIS A114124; Finch 2003, p. 446; Guillera and Sondow 2005; J. Borwein, pers. comm., Feb. 6, 2005), where is a polylogarithm.
is also given by the unit square integral
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
(Guillera and Sondow 2005).
Ramanujan (1911; 2000, p. 323) proposed finding the nested radical expression
![]() |
(17) |
which converges to 3. Vijayaraghavan (in Ramanujan 2000, p. 348) gives the justification of his process both in general, and in the particular example of .
REFERENCES:
Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, 2003.
Guillera, J. and Sondow, J. "Double Integrals and Infinite Products for Some Classical Constants Via Analytic Continuations of Lerch's Transcendent." 16 June 2005 https://arxiv.org/abs/math.NT/0506319.
Ramanujan, S. Question No. 298. J. Indian Math. Soc. 1911.
Ramanujan, S. Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., 2000.
Sloane, N. J. A. Sequences A052129, A112302, A114124, and A116603 in "The On-Line Encyclopedia of Integer Sequences."
Somos, M. "Several Constants Related to Quadratic Recurrences." Unpublished note. 1999.
|
|
"إنقاص الوزن".. مشروب تقليدي قد يتفوق على حقن "أوزيمبيك"
|
|
|
|
|
الصين تحقق اختراقا بطائرة مسيرة مزودة بالذكاء الاصطناعي
|
|
|
|
|
قسم شؤون المعارف ووفد من جامعة البصرة يبحثان سبل تعزيز التعاون المشترك
|
|
|