المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

زيد بن الحسن (عليه السلام)‏
23-2-2017
أجهزة الرقابة دولة قطر
30-10-2016
Royle Graphs
30-3-2022
جانب من حقوق المرأة
2023-03-09
دفنة زيتونية، عود الخل Daphne oleoides
30-8-2019
برّ الوالدين
23-8-2016

Fundamental Discriminant  
  
618   05:16 مساءً   date: 31-12-2019
Author : Atkin, A. O. L. and Morain,
Book or Source : F. "Elliptic Curves and Primality Proving." Math. Comput. 61
Page and Part : ...


Read More
Date: 20-2-2020 541
Date: 22-2-2020 827
Date: 12-1-2020 597

Fundamental Discriminant

 

An integer d is a fundamental discriminant if it is not equal to 1, not divisible by any square of any odd prime, and satisfies d=1 (mod 4) or d=8,12 (mod 16). The function FundamentalDiscriminantQ[d] in the Wolfram Language version 5.2 add-on package NumberTheory`NumberTheoryFunctions` tests if an integer d is a fundamental discriminant.

It can be implemented as:

  FundamentalDiscriminantQ[n_Integer] := n != 1&&
    (Mod[n, 4] == 1 [Or]
      ! Unequal[Mod[n, 16], 8, 12])&&
        SquareFreeQ[n/2^IntegerExponent[n, 2]]

The first few positive fundamental discriminants are 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, ... (OEIS A003658). Similarly, the first few negative fundamental discriminants are -3-4-7-8-11-15-19-20-23-24-31, ... (OEIS A003657).


REFERENCES:

Atkin, A. O. L. and Morain, F. "Elliptic Curves and Primality Proving." Math. Comput. 61, 29-68, 1993.

Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, p. 294, 1987.

Cohn, H. Advanced Number Theory. New York: Dover, 1980.

Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, 2005a.

Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 2005b.

Dickson, L. E. History of the Theory of Numbers, Vol. 3: Quadratic and Higher Forms. New York: Dover, 2005c.

Sloane, N. J. A. Sequences A003657/M2332 and A003658/M3776 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.