Read More
Date: 31-7-2019
1778
Date: 15-5-2019
3466
Date: 2-9-2019
1281
|
The first solution to Lamé's differential equation, denoted for , ..., . They are also called Lamé functions. The product of two ellipsoidal harmonics of the first kind is a spherical harmonic. Whittaker and Watson (1990, pp. 536-537) write
(1) |
|||
(2) |
and give various types of ellipsoidal harmonics and their highest degree terms as
1.
2.
3.
4. .
A Lamé function of degree may be expressed as
(3) |
where or 1/2, are real and unequal to each other and to , , and , and
(4) |
Byerly (1959) uses the recurrence relations to explicitly compute some ellipsoidal harmonics, which he denoted by , , , and ,
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
|||
(12) |
|||
(13) |
|||
(14) |
|||
(15) |
|||
(16) |
|||
(17) |
|||
(18) |
|||
(19) |
|||
(20) |
|||
(21) |
|||
(22) |
|||
(23) |
|||
(24) |
REFERENCES:
Byerly, W. E. "Laplace's Equation in Curvilinear Coördinates. Ellipsoidal Harmonics." Ch. 8 in An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. New York: Dover, pp. 251-266, 1959.
Humbert, P. Fonctions de Lamé et Fonctions de Mathieu. Paris: Gauthier-Villars, 1926.
Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|