Read More
Date: 21-7-2019
![]()
Date: 30-3-2019
![]()
Date: 25-8-2018
![]() |
Let the elliptic modulus satisfy
, and the Jacobi amplitude be given by
with
. The incomplete elliptic integral of the first kind is then defined as
![]() |
(1) |
The elliptic integral of the first kind is implemented in the Wolfram Language as EllipticF[phi, m] (note the use of the parameter instead of the modulus
).
Letting
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
Equation (1) can be written as
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
Letting
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
then the integral can also be written as
![]() |
(9) |
where is the complementary elliptic modulus.
The inverse function of is given by the Jacobi amplitude
![]() |
(10) |
The integral
![]() |
(11) |
which arises in computing the period of a pendulum, is also an elliptic integral of the first kind. Use
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
to write
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
so
![]() |
(17) |
Now let
![]() |
(18) |
so the angle is transformed to
![]() |
(19) |
which ranges from 0 to as
varies from 0 to
. Taking the differential gives
![]() |
(20) |
or
![]() |
(21) |
Plugging this in gives
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
so
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
Making the slightly different substitution , so
leads to an equivalent, but more complicated expression involving an incomplete elliptic integral of the first kind,
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
Therefore, the identity
![]() |
(29) |
holds over at least some region of the complex plane. The region of applicability is , which is shown above.
The elliptic integral of the first kind satisfies
![]() |
(30) |
Special values of include
![]() |
![]() |
![]() |
(31) |
![]() |
![]() |
![]() |
(32) |
where is known as the complete elliptic integral of the first kind.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Elliptic Integrals." Ch. 17 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 587-607, 1972.
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
Spanier, J. and Oldham, K. B. "The Complete Elliptic Integrals and
" and "The Incomplete Elliptic Integrals
and
." Chs. 61-62 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 609-633, 1987.
Tölke, F. "Parameterfunktionen." Ch. 3 in Praktische Funktionenlehre, zweiter Band: Theta-Funktionen und spezielle Weierstraßsche Funktionen. Berlin: Springer-Verlag, pp. 83-115, 1966.
Tölke, F. "Umkehrfunktionen der Jacobischen elliptischen Funktionen und elliptische Normalintegrale erster Gattung. Elliptische Amplitudenfunktionen sowie Legendresche F- und E-Funktion. Elliptische Normalintegrale zweiter Gattung. Jacobische Zeta- und Heumansche Lambda-Funktionen," and "Normalintegrale dritter Gattung. Legendresche -Funktion. Zurückführung des allgemeinen elliptischen Integrals auf Normalintegrale erster, zweiter, und dritter Gattung." Chs. 6-7 in Praktische Funktionenlehre, dritter Band: Jacobische elliptische Funktionen, Legendresche elliptische Normalintegrale und spezielle Weierstraßsche Zeta- und Sigma Funktionen. Berlin: Springer-Verlag, pp. 58-144, 1967.
Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.
Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 122, 1997.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|