Read More
Date: 23-1-2019
![]()
Date: 19-1-2019
![]()
Date: 23-2-2019
![]() |
Every polynomial equation having complex coefficients and degree has at least one complex root. This theorem was first proven by Gauss. It is equivalent to the statement that a polynomial
of degree
has
values
(some of them possibly degenerate) for which
. Such values are called polynomial roots. An example of apolynomial with a single root of multiplicity
is
, which has
as a root of multiplicity 2.
REFERENCES:
Courant, R. and Robbins, H. "The Fundamental Theorem of Algebra." §2.5.4 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 101-103, 1996.
Krantz, S. G. "The Fundamental Theorem of Algebra." §1.1.7 and 3.1.4 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 7 and 32-33, 1999.
Smithies, F. "A Forgotten Paper on the Fundamental Theorem of Algebra." Notes Rec. Roy. Soc. London 54, 333-341, 2000.
|
|
4 أسباب تجعلك تضيف الزنجبيل إلى طعامك.. تعرف عليها
|
|
|
|
|
أكبر محطة للطاقة الكهرومائية في بريطانيا تستعد للانطلاق
|
|
|
|
|
العتبة العباسية المقدسة تبحث مع العتبة الحسينية المقدسة التنسيق المشترك لإقامة حفل تخرج طلبة الجامعات
|
|
|