Read More
Date: 30-5-2018
![]()
Date: 5-7-2018
![]()
Date: 30-5-2018
![]() |
Given a system of two ordinary differential equations
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
let and
denote fixed points with
, so
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
Then expand about so
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
To first-order, this gives
![]() |
(7) |
where the matrix, or its generalization to higher dimension, is called the stability matrix. Analysis of the eigenvalues (and eigenvectors) of the stability matrix characterizes the type of fixed point.
REFERENCES:
Tabor, M. "Linear Stability Analysis." §1.4 in Chaos and Integrability in Nonlinear Dynamics: An Introduction. New York: Wiley, pp. 20-31, 1989.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|