Read More
Date: 24-5-2018
![]()
Date: 13-6-2018
![]()
Date: 25-5-2019
![]() |
The Bessel differential equation is the linear second-order ordinary differential equation given by
![]() |
(1) |
Equivalently, dividing through by ,
![]() |
(2) |
The solutions to this equation define the Bessel functions and
. The equation has a regular singularity at 0 and an irregular singularity at
.
A transformed version of the Bessel differential equation given by Bowman (1958) is
![]() |
(3) |
The solution is
![]() |
(4) |
where
![]() |
(5) |
and
are the Bessel functions of the first and second kinds, and
and
are constants. Another form is given by letting
,
, and
(Bowman 1958, p. 117), then
![]() |
(6) |
The solution is
![]() |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). §9.1.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.
Bowman, F. Introduction to Bessel Functions. New York: Dover, 1958.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, p. 550, 1953.
Zwillinger, D. (Ed.). CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, p. 413, 1995.
Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 121, 1997.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|