1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Matchings

المؤلف:  John M. Harris • Jeffry L. Hirst • Michael J. Mossinghoff

المصدر:  Combinatorics and Graph Theory, Second Edition

الجزء والصفحة:  101-104

3-8-2016

1767

A matching in a graph is a set of independent edges. That is, it is a set of edges in which no pair shares a vertex. Given a matching M in a graph G, the vertices belonging to the edges of M are said to be saturated by M (or M-saturated). The other vertices are M-unsaturated.

Consider the graph G shown in Figure 1.1. An example of a matching in G is M1 = {ab, ce, df}. M2 = {cd, ab} is also a matching, and so is M3 = {df}.

We can see that a, b, c, d are M2-saturated and e, f,and g are M2-unsaturated. The onlyM1-unsaturated vertex is g.

                  FIGURE 1.1. The matching M1.

If a matching M saturates every vertex of G,then M is said to be a perfect matching. In Figure 1.104, G1 has a perfect matching, namely {ab,ch,de,fg}.

None of G2, G3,and G4 has a perfect matching. Why is this? We will talk more about perfect matchings in Sectionof Perfect Matchings.

A maximum matching in a graph is a matching that has the largest possible cardinality. A maximal matching is a matching that cannot be enlarged by the

                                     FIGURE 1.2. Only G1 has a perfect matching

addition of any edge. In Figure 1.3, M1 = {ae,bf,cd,gh} is a maximum matching (since at most one of gh, gi,and gj can be in any matching). The matching  M2 = {dg, af, bc} is maximal, but not maximum.

                                 FIGURE 1.3.


Combinatorics and Graph Theory, Second Edition, John M. Harris • Jeffry L. Hirst • Michael J. Mossinghoff,2000,page(101-104)

 

 

 

EN

تصفح الموقع بالشكل العمودي