تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Bipartite graphs
المؤلف:
Jean-Claude Fournier
المصدر:
Graph Theory and Applications
الجزء والصفحة:
...
27-7-2016
2299
Agraph G is bipartite if the set of its vertices can be divided into two disjoint subsets such that each edge has an end vertex in each subset. We denote a bipartite graph by G =(X, Y,E), where X and Y are the two subsets of vertices (and so X ∪ Y is the set of all vertices) and E is the set of edges.
Notes.
1) It is important to note that one of the sets X or Y can be empty. As a result, the couple (X, Y ) is not mathematically, strictly speaking, a partition (the sets of a partition should not be empty). Nevertheless the terms “bipartition” and “classes” are often used. It should be noted that with this definition a graph reduced to one vertex, and no edge, is bipartite.
2) A bipartition which defines a graph as bipartite is generally notunique.
3) A bipartite graph has no loops. Indeed a loop would contradict the hypothesis that an edge has its end vertices in different sets. However, a bipartite graph may have multiple edges.
A bipartite graph G =(X, Y,E)is complete if it is simple and the set of its edges is E = {x y | x ∈ X, y ∈ Y }, that is any pair of a vertex of X And of avertex of Y is an edge of G. It is denoted by Kp,q, where p is the cardinality of X and q the cardinality of Y (see Figure 1.1 for an example).
Bipartite graphs are important in graph theory and for certain applications. They are also interesting as they can be easily characterized by a property of cycles as in the following classic result.
Figure 1.1. Two ways of representing the complete bipartite graph K3,3
Graph Theory and Applications ,Jean-Claude Fournier, WILEY, page(36-37)