النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
Biosynthesis of the Nutritionally Nonessential Amino Acids
المؤلف:
Peter J. Kennelly, Kathleen M. Botham, Owen P. McGuinness, Victor W. Rodwell, P. Anthony Weil
المصدر:
Harpers Illustrated Biochemistry
الجزء والصفحة:
32nd edition.p275-278
2025-08-11
49
Glutamate
Glutamate, the precursor of the so-called “glutamate family” of amino acids, is formed by the reductive amidation of the citric acid cycle intermediate α-ketoglutarate, a reaction catalyzed by mitochondrial glutamate dehydrogenase (Figure 1). The reaction both strongly favors glutamate synthesis and lowers the concentration of cytotoxic ammonium ion.
Fig1. The reaction catalyzed by glutamate dehydro genase (EC 1.4.1.3).
Glutamine
The amidation of glutamate to glutamine catalyzed by glutamine synthetase (Figure 2) involves the intermediate formation of γ-glutamyl phosphate (Figure 3). Following the ordered binding of glutamate and ATP, glutamate attacks the γ-phosphorus of ATP, forming γ-glutamyl phosphate and ADP. NH4 + then binds, and uncharged NH3 attacks γ-glutamyl phosphate. Release of Pi and of a proton from the γ-amino group of the tetrahedral inter mediate then allows release of the product, glutamine.
Fig2. The reaction catalyzed by glutamine synthetase (EC 6.3.1.2).
Fig3. γ-Glutamyl phosphate.
Alanine & Aspartate
Transamination of pyruvate forms alanine (Figure 4). Similarly, transamination of oxaloacetate forms aspartate.
Fig4. Formation of alanine by transamination of pyruvate.The amino donor may be glutamate or aspartate. The other product thus is α-ketoglutarate or oxaloacetate.
Glutamate Dehydrogenase, Glutamine Synthetase, & Aminotransferases Play Central Roles in Amino Acid Biosynthesis
The combined action of the enzymes glutamate dehydrogenase, glutamine synthetase, and the aminotransferases (see Figures 1, 2, and 4) results in the incorporation of potentially cytotoxic ammonium ion into nontoxic amino acids.
Asparagine
The conversion of aspartate to asparagine, catalyzed by asparagine synthetase (Figure 5), resembles the glutamine synthetase reaction (see Figure 2), but glutamine, rather than ammonium ion, provides the nitrogen. Bacterial asparagine synthetases can, however, also use ammonium ion. The reaction involves the intermediate formation of aspartyl phosphate (Figure 6). The coupled hydrolysis of PPi to Pi by pyro phosphatase, EC 3.6.1.1, ensures that the reaction is strongly favored.
Fig5. The reaction catalyzed by asparagine synthetase (EC 6.3.5.4). Note similarities to and differences from the glutamine synthetase reaction (Figure 2).
Fig6. Aspartyl phosphate.
Serine
Oxidation of the α-hydroxyl group of the glycolytic intermediate 3-phosphoglycerate, catalyzed by 3-phosphoglycerate dehydrogenase, converts it to 3-phosphohydroxypyruvate. Transamination and subsequent dephosphorylation then form serine (Figure 7).
Fig7. Serine biosynthesis. Oxidation of 3-phosphoglycerate is catalyzed by 3-phosphoglycerate dehydrogenase (EC 1.1.1.95). Transamination converts phosphohydroxypyruvate to phosphoserine. Hydrolytic removal of the phosphoryl group catalyzed by phosphoserine hydrolase (EC 3.1.3.3) then forms l-serine.
Glycine
Glycine aminotransferases can catalyze the synthesis of gly cine from glyoxylate and glutamate or alanine. Unlike most aminotransferase reactions, is strongly favored glycine syn thesis. Additional important mammalian routes for glycine formation are from choline (Figure 8) and from serine (Figure 9).
Fig8. Formation of glycine from choline. Catalysts include choline dehydrogenase (EC 1.1.3.17), betaine aldehyde dehydrogenase (EC 1.2.1.8), betaine-homocysteine N-methyltransferase (EC 2.1.1.157), sarcosine dehydrogenase (EC 1.5.8.3), and dimethylglycine dehydrogenase (EC 1.5.8.4).
Fig9. Interconversion of serine and glycine, cata lyzed by serine hydroxymethyltransferase (EC 2.1.2.1).The reac tion is freely reversible. (H4 folate, tetrahydrofolate.)
Proline
The initial reaction of proline biosynthesis converts the γ-carboxyl group of glutamate to the mixed acid anhydride of glutamate γ-phosphate (see Figure 3). Subsequent reduction forms glutamate γ-semialdehyde, which following spontaneous cyclization is reduced to l-proline (Figure 10).
Fig10. Biosynthesis of proline from glutamate. Catalysts for these reactions are glutamate-5-kinase (EC 2.7.2.11), glutamate-5-semialdehyde dehydrogenase (EC 1.2.1.41), and pyrroline 5-carboxylate reductase (EC 1.5.1.2). Ring closure of glutamate semi aldehyde is spontaneous.
Cysteine
While not itself nutritionally essential, cysteine is formed from methionine, which is nutritionally essential. Following con version of methionine to homocysteine, homocysteine and serine form cystathionine, whose hydrolysis forms cysteine and homoserine (Figure 11). Tyrosine Phenylalanine hydroxylase converts phenylalanine to tyro sine (Figure 12). If the diet contains adequate quantities of the nutritionally essential amino acid phenylalanine, tyrosine is nutritionally nonessential. However, since the phenylalanine hydroxylase reaction is irreversible, dietary tyrosine cannot replace phenylalanine. Catalysis by this mixed-function oxidase incorporates one atom of O2 into the paraposition of phenylalanine and reduces the other atom to water. Reducing power, provided as tetrahydrobiopterin, derives ultimately from NADPH.
Fig11. Conversion of homocysteine and serine to homoserine and cysteine.The sulfur of cysteine derives from methio nine and the carbon skeleton from serine. The catalysts are cystathionine β-synthase (EC 4.2.1.22) and cystathionine γ-lyase (EC 4.4.1.1).
Fig12. Conversion of phenylalanine to tyrosine by phenylalanine hydroxylase (EC 1.14.16.1). Two distinct enzymatic activities are involved. Activity II catalyzes reduction of dihydrobiopterin by NADPH, and activity I the reduction of O2 to H2O and of phenylalanine to tyrosine.
Hydroxyproline & Hydroxylysine
Hydroxyproline and hydroxylysine occur principally in collagen. Since there is no tRNA for either hydroxylated amino acid, neither dietary hydroxyproline nor dietary hydroxylysine is incorporated during protein synthesis. Peptidyl hydroxyproline and hydroxylysine arise from proline and lysine, but only after these amino acids have been incorporated into peptides. Hydroxylation of peptidyl prolyl and peptidyl lysyl residues, catalyzed by prolyl hydroxylase and lysyl hydroxylase of skin, skeletal muscle, and granulating wounds requires, in addition to the substrate, molecular O2 , ascorbate, Fe2+, and α-ketoglutarate (Figure 13). For every mole of proline or lysine hydroxylated, one mole of α-ketoglutarate is decarboxylated to succinate. The hydroxylases are mixed-function oxidases. One atom of O2 is incorporated into proline or lysine, the other into succinate (see Figure 13). A deficiency of the vitamin C required for these two hydroxylases results in scurvy, in which bleeding gums, swelling joints, and impaired wound healing result from the impaired stability of collagen.
Fig13. Hydroxylation of a proline-rich peptide. Molecular oxygen is incorporated into both succinate and proline. Procollagen-proline 4-hydroxylase (EC 1.14.11.2) thus is a mixed function oxidase. Procollagen-lysine 5-hydroxylase (EC 1.14.11.4) catalyzes an analogous reaction.
Valine, Leucine, & Isoleucine
While leucine, valine, and isoleucine are all nutritionally essential amino acids, tissue aminotransferases reversibly interconvert all three amino acids and their corresponding α-keto acids. These α-keto acids thus can replace their corresponding amino acids in the diet.
Selenocysteine, the 21st Amino Acid
While the occurrence of selenocysteine (Figure 14) in proteins is relatively uncommon, at least 25 human selenoproteins are known. Selenocysteine is present at the active site of several human enzymes that catalyze redox reactions. Examples include thioredoxin reductase, glutathione peroxidase, and the deiodinase that converts thyroxine to triiodothyronine. Where present, selenocysteine participates in the catalytic mechanism of these enzymes. Significantly, the replacement of selenocysteine by cysteine can actually reduce catalytic activity. Impairments in human selenoproteins have been implicated in tumorgenesis and atherosclerosis, and are associated with selenium deficiency cardiomyopathy (Keshan disease).
Fig14. Selenocysteine (top) and the reaction cata lyzed by selenophosphate synthetase (EC 2.7.9.3) (bottom).
Biosynthesis of selenocysteine requires serine, selenate (SeO4 2−), ATP, a specific tRNA, and several enzymes. Serine pro vides the carbon skeleton of selenocysteine. Selenophosphate, formed from ATP and selenate (see Figure 14), serves as the selenium donor. Unlike 4-hydroxyproline or 5-hydroxylysine, selenocysteine arises cotranslationally during its incorporation into peptides. The UGA anticodon of the unusual tRNA called tRNASec normally signals STOP. The ability of the protein synthetic apparatus to identify a selenocysteine-specific UGA codon involves the selenocysteine insertion element, a stem loop structure in the untranslated region of the mRNA. tRNASec is first charged with serine by the ligase that charges tRNASer.
Subsequent replacement of the serine oxygen by selenium involves selenophosphate formed by selenophosphate synthetase (see Figure 14). Successive enzyme-catalyzed reactions convert cysteyl-tRNASec to aminoacrylyl-tRNASec and then to selenocysteyl-tRNASec. In the presence of a specific elongation factor that recognizes selenocysteyl-tRNASec, selenocysteine can then be incorporated into proteins..
الاكثر قراءة في الكيمياء الحيوية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
