1

المرجع الالكتروني للمعلوماتية

علم الكيمياء

تاريخ الكيمياء والعلماء المشاهير

التحاضير والتجارب الكيميائية

المخاطر والوقاية في الكيمياء

اخرى

مقالات متنوعة في علم الكيمياء

كيمياء عامة

الكيمياء التحليلية

مواضيع عامة في الكيمياء التحليلية

التحليل النوعي والكمي

التحليل الآلي (الطيفي)

طرق الفصل والتنقية

الكيمياء الحياتية

مواضيع عامة في الكيمياء الحياتية

الكاربوهيدرات

الاحماض الامينية والبروتينات

الانزيمات

الدهون

الاحماض النووية

الفيتامينات والمرافقات الانزيمية

الهرمونات

الكيمياء العضوية

مواضيع عامة في الكيمياء العضوية

الهايدروكاربونات

المركبات الوسطية وميكانيكيات التفاعلات العضوية

التشخيص العضوي

تجارب وتفاعلات في الكيمياء العضوية

الكيمياء الفيزيائية

مواضيع عامة في الكيمياء الفيزيائية

الكيمياء الحرارية

حركية التفاعلات الكيميائية

الكيمياء الكهربائية

الكيمياء اللاعضوية

مواضيع عامة في الكيمياء اللاعضوية

الجدول الدوري وخواص العناصر

نظريات التآصر الكيميائي

كيمياء العناصر الانتقالية ومركباتها المعقدة

مواضيع اخرى في الكيمياء

كيمياء النانو

الكيمياء السريرية

الكيمياء الطبية والدوائية

كيمياء الاغذية والنواتج الطبيعية

الكيمياء الجنائية

الكيمياء الصناعية

البترو كيمياويات

الكيمياء الخضراء

كيمياء البيئة

كيمياء البوليمرات

مواضيع عامة في الكيمياء الصناعية

الكيمياء الاشعاعية والنووية

علم الكيمياء : الكيمياء العضوية : مواضيع عامة في الكيمياء العضوية :

NMR uses a strong magnetic field

المؤلف:  Jonathan Clayden , Nick Greeves , Stuart Warren

المصدر:  ORGANIC CHEMISTRY

الجزء والصفحة:  ص52-53

2025-04-20

107

Imagine for a moment that we were able to ‘switch off’ the earth’s magnetic field. Navigation would be made much harder since all compasses would be useless, with their needles pointing randomly in any direction. However, as soon as we switched the magnetic field back on, they would all point north—their lowest energy state. Now if we wanted to force a needle to point south, we would have to use up energy and, of course, as soon as we let go, the needle would return to its lowest energy state, pointing north. In a similar way, some atomic nuclei act like tiny compass needles when placed in a mag netic field and have different energy levels according to the direction in which they are ‘pointing’. (We will explain how a nucleus can ‘point’ somewhere in a moment.) A real com pass needle can rotate through 360° and have an essentially infinite number of different energy levels, all higher in energy than the ‘ground state’ (pointing north). Fortunately, things are simpler with an atomic nucleus: its energy levels are quantized, just like the energy levels of an electron, which you will meet in the next chapter, and it can adopt only certain specifi c energy levels. This is like a compass which points, say, only north or south, or maybe only north, south, east, or west, and nothing in between. Just as a compass needle has to be made of a magnetic material to feel the effect of the earth’s magnetism, so it is that only certain nuclei are ‘magnetic’. Many (including ‘normal’ carbon-12, 12C) do not interact with a magnetic field at all and cannot be observed in an NMR machine. But, importantly for us in this chapter, the minor carbon isotope 13C does display magnetic properties, as does 1H, the most abundant atomic nucleus on earth. When a 13C or 1H atom finds itself in a magnetic field, it has two available energy states: it can either align itself with the fi eld (‘north’ you could say), which would be the lowest energy state, or against the field (‘south’), which is higher in energy.

The property of a nucleus that allows magnetic interactions, i.e. the property possessed by 13C and 1H but not by 12C, is spin. If you conceive of a 13C and 1H nucleus spinning, you can see how the nucleus can point in one direction—it is the axis of the spin that is aligned with or against the field. Let’s return to the compass for a moment. If you want to move a compass needle away from pointing north, you have to push it—and expend energy as you do so. If you put the compass next to a bar magnet, the attraction towards the magnet is much greater than the attraction towards the north pole, and the needle now points at the magnet. You also have to push much harder if you want to move the needle. Exactly how hard it is to turn the compass needle depends on how strong the magnetic fi eld is and also on how well the needle is magnetized—if it is only weakly magnetized, it is much easier to turn it round and if it isn’t magnetized at all, it is free to rotate. Likewise, for a nucleus in a magnetic field, the difference in energy between the nuclear spin aligned with and against the applied fi eld depends on:

• how strong the magnetic field is, and

 • the magnetic properties of the nucleus itself. The stronger the magnetic field, the greater the energy difference between the two alignments of the nucleus. Now there is an unfortunate thing about NMR: the energy difference between the nuclear spin being aligned with the magnetic field and against it is really very small—so small that we need a very, very strong magnetic field to see any differ ence at all.

EN

تصفح الموقع بالشكل العمودي