تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Happy End Problem
المؤلف:
Borwein, J. and Bailey, D
المصدر:
Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters,
الجزء والصفحة:
...
18-5-2022
2552
The happy end problem, also called the "happy ending problem," is the problem of determining for the smallest number of points
in general position in the plane (i.e., no three of which are collinear), such that every possible arrangement of
points will always contain at least one set of
points that are the vertices of a convex polygon of
sides. The problem was so-named by Erdős when two investigators who first worked on the problem, Ester Klein and George Szekeres, became engaged and subsequently married (Hoffman 1998, p. 76).
Since three noncollinear points always determine a triangle, .
Random arrangements of points are illustrated above. Note that no convex quadrilaterals are possible for the arrangements shown in the fifth and eighth figures above, so
must be greater than 4. E. Klein proved that
by showing that any arrangement of five points must fall into one of the three cases (left top figure; Hoffman 1998, pp. 75-76).
Random arrangements of points are illustrated above. Note that no convex pentagons are possible for the arrangement shown in the fifth figure above, so
must be greater than 8. E. Makai proved
after demonstrating that a counterexample could be found for eight points (right top figure; Hoffman 1998, pp. 75-76).
As the number of points increases, the number of
-subsets of
that must be examined to see if they form convex
-gons increases as
, so combinatorial explosion prevents cases much bigger than
from being easily studied. Furthermore, the parameter space become so large that searching for a counterexample at random even for the case
with
points takes an extremely long time. For these reasons, the general problem remains open.
was demonstrated by Szekeres and Peters (2006) using a computer search which eliminated all possible configurations of 17 points which lacked convex hexagons while examining only a tiny fraction of all configurations.
Erdős and Szekeres (1935) showed that always exists and derived the bound
(1) |
where is a binomial coefficient. For
, this has since been reduced to
for
(2) |
by Chung and Graham (1998), for
(3) |
by Kleitman and Pachter (1998), and for
(4) |
by Tóth and Valtr (1998). For , these bounds give 71, 70, 65, and 37, respectively (Hoffman 1998, p. 78).
The values of for
, 7, ... are 37, 128, 464, 1718, ... (OEIS A052473).
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, p. 78, 2003.
Chung, F. R. K. and Graham, R. L. "Forced Convex -gons in the Plane." Discr. Comput. Geom. 19, 367-371, 1998.
Erdős, P. and Szekeres, G. "A Combinatorial Problem in Geometry." Compositio Math. 2, 463-470, 1935.
Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, pp. 75-78, 1998.
Kleitman, D. and Pachter, L. "Finding Convex Sets among Points in the Plane." Discr. Comput. Geom. 19, 405-410, 1998.
Lovász, L.; Pelikán, J.; and Vesztergombi, K. Discrete Mathematics, Elementary and Beyond. New York: Springer-Verlag, 2003.
Sloane, N. J. A. Sequence A052473 in "The On-Line Encyclopedia of Integer Sequences."Szekeres, G. and Peters, L. "Computer Solution to the 17-Point Erdős-Szekeres Problem." ANZIAM J. 48, 151-164, 2006.
Tóth, G. and Valtr, P. "Note on the Erdős-Szekeres Theorem." Discr. Comput. Geom. 19, 457-459, 199