1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Rooted Tree

المؤلف:  Borwein, J. and Bailey, D

المصدر:  Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters

الجزء والصفحة:  ...

8-5-2022

2509

Rooted Tree

 

RootedTrees

A rooted tree is a tree in which a special ("labeled") node is singled out. This node is called the "root" or (less commonly) "eve" of the tree. Rooted trees are equivalent to oriented trees (Knuth 1997, pp. 385-399). A tree which is not rooted is sometimes called a free tree, although the unqualified term "tree" generally refers to a free tree.

A rooted tree in which the root vertex has vertex degree 1 is known as a planted tree.

The numbers of rooted trees on n nodes for n=1, 2, ... are 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, ... (OEIS A000081). Denote the number of rooted trees with n nodes by T_n, then the generating function is

T(x) = sum_(n=0)^(infty)T_nx^n

(1)

= x+x^2+2x^3+4x^4+9x^5+20x^6+48x^7+115x^8+286x^9+719x^(10)+....

(2)

This power series satisfies

T(x) = xexp[sum_(r=1)^(infty)1/rT(x^r)]

(3)

t(x) = T(x)-1/2[T^2(x)-T(x^2)],

(4)

where t(x) is the generating function for unrooted trees. A generating function for T_n can be written using a product involving the sequence itself as

 xproduct_(n=1)^infty1/((1-x^n)^(T_n))=sum_(n=1)^inftyT_nx^n.

(5)

The number of rooted trees can also be calculated from the recurrence relation

 T_(i+1)=1/isum_(j=1)^i(sum_(d|j)T_dd)T_(i-j+1),

(6)

with T_0=0 and T_1=1, where the second sum is over all d which divide j (Finch 2003).

As shown by Otter (1948),

alpha = lim_(n->infty)(T_n)/(T_(n-1))

(7)

= 2.955765...

(8)

(OEIS A051491; Odlyzko 1995; Knuth 1997, p. 396), where alpha is given by the unique positive root of

 T(1/x)=1.

(9)

If T_n is the number of nonisomorphic rooted trees on n nodes, then an asymptotic series for T_n is given by

 T_n∼alpha^nn^(-3/2)(0.4399240125...+(0.0441699018...)/n+(0.2216928059...)/(n^2)+(0.8676554908...)/(n^3)+...),

(10)

where the constants can be computed in terms of partial derivatives of the function

 F(x,y)=xexp[y+sum_(k=2)^infty(T(x^k))/k]-y

(11)

(Plotkin and Rosenthal 1994; Finch 2003).


REFERENCES

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, p. 22, 2003.

Finch, S. R. "Otter's Tree Enumeration Constants." §5.6 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 295-316, 2003.

Finch, S. "Two Asymptotic Series." December 10, 2003. http://algo.inria.fr/bsolve/.

Harary, F. Graph Theory. Reading, MA: Addison-Wesley, pp. 187-190 and 232, 1994.

Harary, F. and Palmer, E. M. "Rooted Trees." §3.1 in Graphical Enumeration. New York: Academic Press, pp. 51-54, 1973.

Knuth, D. E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1997.

Nijenhuis, A. and Wilf, H. Combinatorial Algorithms for Computers and Calculators, 2nd ed. New York: Academic Press, 1978.

Odlyzko, A. M. "Asymptotic Enumeration Methods." In Handbook of Combinatorics, Vol. 2 (Ed. R. L. Graham, M. Grötschel, and L. Lovász). Cambridge, MA: MIT Press, pp. 1063-1229, 1995. http://www.dtc.umn.edu/~odlyzko/doc/asymptotic.enum.pdf.

Otter, R. "The Number of Trees." Ann. Math. 49, 583-599, 1948.

Plotkin, J. M. and Rosenthal, J. W. "How to Obtain an Asymptotic Expansion of a Sequence from an Analytic Identity Satisfied by Its Generating Function." J. Austral. Math. Soc. Ser. A 56, 131-143, 1994.

Pólya, G. "On Picture-Writing." Amer. Math. Monthly 63, 689-697, 1956.

Ruskey, F. "Information on Rooted Trees." http://www.theory.csc.uvic.ca/~cos/inf/tree/RootedTree.html.Sloane, N. J. A. Sequences A000081/M1180 and A051491 in "The On-Line Encyclopedia of Integer Sequences."Wilf, H. S. Combinatorial Algorithms: An Update. Philadelphia, PA: SIAM, 1989.a

EN

تصفح الموقع بالشكل العمودي