

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Wiener Index
المؤلف:
Babić, D.; Klein, D. J.; Lukovits, I.; Nikolić, S.; and Trinajstić, N
المصدر:
"Resistance-Distance Matrix: A Computational Algorithm and Its Applications." Int. J. Quant. Chem. 90
الجزء والصفحة:
...
8-4-2022
2809
Wiener Index
The Wiener index , denoted
(Wiener 1947) and also known as the "path number" or Wiener number (Plavšić et al. 1993), is a graph index defined for a graph on
nodes by
where is the graph distance matrix.
Unless otherwise stated, hydrogen atoms are usually ignored in the computation of such indices as organic chemists usually do when they write a benzene ring as a hexagon (Devillers and Balaban 1999, p. 25).
The Wiener index is not very discriminant. In fact, the paw graph and square graph on four nodes are already indistinguishable using the Wiener index (both have value 8). The numbers of non-Wiener-unique connected graphs on , 2, ... nodes given by 0, 0, 0, 2, 16, 108, 847, 11110, 261072, ... (OEIS A193217).
Precomputed values for many graphs are implemented in the Wolfram Language as GraphData[g, "WienerIndex"].
The following table summarizes values of the Wiener index for various special classes of graphs.
| graph class | OEIS | |
| Andrásfai graph | A292018 | 1, 15, 44, 88, 147, 221, 310, 414, ... |
| antelope graph |
A292039 | 0, |
| antiprism graph | A002411 | X, X, 18, 40, 75, 126, 196, 288, ... |
| Apollonian network | A289022 | 6, 27, 204, 1941, 19572, 198567, ... |
| black bishop graph |
A292051 | 0, 1, 14, 42, 124, 251, 506, 852, 1432, 2165, ... |
| cocktail party graph | A001105 | |
| complete bipartite graph |
A000567 | 1, 1, 5, 73, 2069, 95401, 6487445, ... |
| complete tripartite graph |
A094159 | 1, 11, 1243, 490043, 463370491, ... |
| complete graph |
A000217 | 0, 1, 3, 6, 10, 15, 21, 28, 36, ... |
| A292022 | X, 48, 132, 288, 540, 912, 1428, ... | |
| crown graph |
A033428 | X, X, 27, 48, 75, 108, 147, 192, 243, ... |
| cube-connected cycle graph | A292028 | X, X, 888, 9472, 76336, 559584, 3594952, ... |
| cycle graph |
A034828 | X, X, 3, 8, 15, 27, 42, 64, 90, ... |
| Fibonacci cube graph | A238419 | 1, 4, 16, 54, 176, 548, 1667, 4968,, ... |
| fiveleaper graph |
A292040 | 0, |
| folded cube graph | A292029 | X, 1, 6, 40, 200, 1056, 4928, 23808, ... |
| gear graph | A049598 | X, X, 36, 72, 120, 180, 252, 336, 432, ... |
| grid graph |
A143945 | 0, 8, 72, 320, 1000, 2520, 5488, 10752, ... |
| grid graph |
A292045 | 0, 48, 972, 7680, 37500, 136080, 403368, ... |
| halved cube graph | A292044 | 0, 1, 6, 32, 160, 768, 3584, 16384, ... |
| Hanoi graph | A290004 | 3, 72, 1419, 26580, 487839, 8867088, ... |
| hypercube graph |
A002697 | 1, 8, 48, 256, 1280, 6144, 28672, ... |
| Keller graph | A292056 | |
| king graph |
A292053 | 0, 6, 52, 228, 708, 1778, 3864, 7560, ... |
| knight graph |
A292054 | 0, |
| Menger sponge graph | A292036 | 612, 794976, 954380016, ... |
| Möbius ladder | A180857 | X, X, 21, 44, 85, 138, 217, 312, 441, ... |
| Mycielski graph | A292055 | 0, 1, 15, 90, 435, 1926, 8175, 33930, ... |
| odd graph |
A136328 | 0, 3, 75, 1435, 25515, 436821, ... |
| pan graph | A180861 | 8, 16, 26, 42, 61, 88, 119, 160, 206, 264, ... |
| path graph |
A000292 | 0, 1, 4, 10, 20, 35, 56, 84, 120, ... |
| permutation star graph |
A284039 | 0, 1, 27, 744, 26520, 1239840, ... |
| prism graph |
A138179 | X, X, 21, 48, 85, 144, 217, 320, 441, ... |
| queen graph |
A292057 | 0, 6, 44, 164, 440, 970, 1876, 3304, 5424, ... |
| rook graph |
A085537 | X, 8, 54, 192, 500, 1080, 2058, 3584, 5832, ... |
| rook complement graph |
A292058 | 0, |
| Sierpiński carpet graph | A292025 | 64, 13224, 2535136, 485339728, ... |
| Sierpiński sieve graph | A290129 | 3, 21, 246, 3765, 64032, 1130463, 20215254, ... |
| Sierpiński tetrahedron graph | A292026 | 6, 66, 1476, 42984, 1343568, 42744480, ... |
| star graph |
A000290 | 0, 1, 4, 9, 16, 25, 36, 49, 64, ... |
| sun graph | A180863 | X, X, 21, 44, 75, 114, 161, 216, 279, 350, ... |
| sunlet graph |
A180574 | X, X, 27, 60, 105, 174, 259, 376, 513, 690, ... |
| tetrahedral graph | A292061 | X, X, X, X, X, 300, 1050, 2940, 7056, 15120, ... |
| torus grid graph |
A122657 | 54, 256, 750, 1944, 4116, 8192, 14580, 25000, ... |
| transposition graph | A292062 | 0, 1, 21, 552, 19560, 920160, 55974240, ... |
| triangular graph | A006011 | 0, 3, 18, 60, 150, 315, 588, 1008, 1620, ... |
| triangular grid graph | A112851 | 3, 21, 81, 231, 546, 1134, 2142, 3762, 6237, ... |
| web graph | A180576 | X, X, 69, 148, 255, 417, 616, 888, 1206, 1615, ... |
| wheel graph |
A002378 | X, X, X, X, 12, 20, 30, 42, 56, 72, ... |
| white bishop graph |
A292059 | X, 1, 8, 42, 104, 251, 464, 852, 1360, 2165, ... |
Closed forms are summarized in the following table. The cycle graph was considered by Plavšić et al. (1993) and Babić et al. (2002) and the path graph by Plavšić et al. (1993).
| Andrásfai graph | |
| antiprism graph | |
| cocktail party graph |
|
| complete graph |
|
| crossed prism graph | |
| crown graph |
|
| cycle graph |
|
| gear graph | |
| grid graph |
|
| grid graph |
|
| halved cube graph | |
| hypercube graph |
|
| Möbius ladder | |
| Mycielski graph |
|
| path graph |
|
| rook graph |
|
| star graph |
|
| sun graph | |
| sunlet graph |
|
| triangular graph | |
| wheel graph |
REFERENCES
Babić, D.; Klein, D. J.; Lukovits, I.; Nikolić, S.; and Trinajstić, N. "Resistance-Distance Matrix: A Computational Algorithm and Its Applications." Int. J. Quant. Chem. 90, 166-176, 2002.
Devillers, J. and Balaban, A. T. (Eds.). Topological Indices and Related Descriptors in QSAR and QSPR. Amsterdam, Netherlands: Gordon and Breach, pp. 26 and 108-109, 1999.
Hosoya, H. "Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons." Bull. Chem. Soc. Japan 44, 2322-2239, 1971.
Plavšić, D.; Nikolić, S.; Trinajstić, N.; and Mihalić, Z. "On the Harary Index for the Characterization of Chemical Graphs." J. Math. Chem. 12, 235-250, 1993.
Sloane, N. J. A. Sequence OEIS A193217 in "The On-Line Encyclopedia of Integer Sequences."Wiener, H. J. "Structural Determination of Paraffin Boiling Points." J. Amer. Chem. Soc. 69, 17-20, 1947.
Wiener, H. "Influence of Interatomic Forces on Paraffin Properties." J. Chem. Phys. 15, 766, 1947.Wiener, H. "Vapor Pressure-Temperature Relationships Among the Branched Paraffin Hydrocarbons." J. Phys. Chem. 52, 425-430, 1948.
Wiener, H. "Relation of the Physical Properties of the Isomeric Alkanes to Molecular Structure. Surface Tension, Specific Dispersion, and Critical Solution Temperature in Aniline." J. Phys. Chem. 52, 1082-1089, 1948.
Zerovnik, J. "Szeged Index of Symmetric Graphs." J. Chem. Inf. Comput. Sci. 39, 77-80, 1999.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)