تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Wiener Index
المؤلف:
Babić, D.; Klein, D. J.; Lukovits, I.; Nikolić, S.; and Trinajstić, N
المصدر:
"Resistance-Distance Matrix: A Computational Algorithm and Its Applications." Int. J. Quant. Chem. 90
الجزء والصفحة:
...
8-4-2022
2503
Wiener Index
The Wiener index , denoted
(Wiener 1947) and also known as the "path number" or Wiener number (Plavšić et al. 1993), is a graph index defined for a graph on
nodes by
where is the graph distance matrix.
Unless otherwise stated, hydrogen atoms are usually ignored in the computation of such indices as organic chemists usually do when they write a benzene ring as a hexagon (Devillers and Balaban 1999, p. 25).
The Wiener index is not very discriminant. In fact, the paw graph and square graph on four nodes are already indistinguishable using the Wiener index (both have value 8). The numbers of non-Wiener-unique connected graphs on , 2, ... nodes given by 0, 0, 0, 2, 16, 108, 847, 11110, 261072, ... (OEIS A193217).
Precomputed values for many graphs are implemented in the Wolfram Language as GraphData[g, "WienerIndex"].
The following table summarizes values of the Wiener index for various special classes of graphs.
graph class | OEIS | |
Andrásfai graph | A292018 | 1, 15, 44, 88, 147, 221, 310, 414, ... |
antelope graph |
A292039 | 0, |
antiprism graph | A002411 | X, X, 18, 40, 75, 126, 196, 288, ... |
Apollonian network | A289022 | 6, 27, 204, 1941, 19572, 198567, ... |
black bishop graph |
A292051 | 0, 1, 14, 42, 124, 251, 506, 852, 1432, 2165, ... |
cocktail party graph | A001105 | |
complete bipartite graph |
A000567 | 1, 1, 5, 73, 2069, 95401, 6487445, ... |
complete tripartite graph |
A094159 | 1, 11, 1243, 490043, 463370491, ... |
complete graph |
A000217 | 0, 1, 3, 6, 10, 15, 21, 28, 36, ... |
A292022 | X, 48, 132, 288, 540, 912, 1428, ... | |
crown graph |
A033428 | X, X, 27, 48, 75, 108, 147, 192, 243, ... |
cube-connected cycle graph | A292028 | X, X, 888, 9472, 76336, 559584, 3594952, ... |
cycle graph |
A034828 | X, X, 3, 8, 15, 27, 42, 64, 90, ... |
Fibonacci cube graph | A238419 | 1, 4, 16, 54, 176, 548, 1667, 4968,, ... |
fiveleaper graph |
A292040 | 0, |
folded cube graph | A292029 | X, 1, 6, 40, 200, 1056, 4928, 23808, ... |
gear graph | A049598 | X, X, 36, 72, 120, 180, 252, 336, 432, ... |
grid graph |
A143945 | 0, 8, 72, 320, 1000, 2520, 5488, 10752, ... |
grid graph |
A292045 | 0, 48, 972, 7680, 37500, 136080, 403368, ... |
halved cube graph | A292044 | 0, 1, 6, 32, 160, 768, 3584, 16384, ... |
Hanoi graph | A290004 | 3, 72, 1419, 26580, 487839, 8867088, ... |
hypercube graph |
A002697 | 1, 8, 48, 256, 1280, 6144, 28672, ... |
Keller graph | A292056 | |
king graph |
A292053 | 0, 6, 52, 228, 708, 1778, 3864, 7560, ... |
knight graph |
A292054 | 0, |
Menger sponge graph | A292036 | 612, 794976, 954380016, ... |
Möbius ladder | A180857 | X, X, 21, 44, 85, 138, 217, 312, 441, ... |
Mycielski graph | A292055 | 0, 1, 15, 90, 435, 1926, 8175, 33930, ... |
odd graph |
A136328 | 0, 3, 75, 1435, 25515, 436821, ... |
pan graph | A180861 | 8, 16, 26, 42, 61, 88, 119, 160, 206, 264, ... |
path graph |
A000292 | 0, 1, 4, 10, 20, 35, 56, 84, 120, ... |
permutation star graph |
A284039 | 0, 1, 27, 744, 26520, 1239840, ... |
prism graph |
A138179 | X, X, 21, 48, 85, 144, 217, 320, 441, ... |
queen graph |
A292057 | 0, 6, 44, 164, 440, 970, 1876, 3304, 5424, ... |
rook graph |
A085537 | X, 8, 54, 192, 500, 1080, 2058, 3584, 5832, ... |
rook complement graph |
A292058 | 0, |
Sierpiński carpet graph | A292025 | 64, 13224, 2535136, 485339728, ... |
Sierpiński sieve graph | A290129 | 3, 21, 246, 3765, 64032, 1130463, 20215254, ... |
Sierpiński tetrahedron graph | A292026 | 6, 66, 1476, 42984, 1343568, 42744480, ... |
star graph |
A000290 | 0, 1, 4, 9, 16, 25, 36, 49, 64, ... |
sun graph | A180863 | X, X, 21, 44, 75, 114, 161, 216, 279, 350, ... |
sunlet graph |
A180574 | X, X, 27, 60, 105, 174, 259, 376, 513, 690, ... |
tetrahedral graph | A292061 | X, X, X, X, X, 300, 1050, 2940, 7056, 15120, ... |
torus grid graph |
A122657 | 54, 256, 750, 1944, 4116, 8192, 14580, 25000, ... |
transposition graph | A292062 | 0, 1, 21, 552, 19560, 920160, 55974240, ... |
triangular graph | A006011 | 0, 3, 18, 60, 150, 315, 588, 1008, 1620, ... |
triangular grid graph | A112851 | 3, 21, 81, 231, 546, 1134, 2142, 3762, 6237, ... |
web graph | A180576 | X, X, 69, 148, 255, 417, 616, 888, 1206, 1615, ... |
wheel graph |
A002378 | X, X, X, X, 12, 20, 30, 42, 56, 72, ... |
white bishop graph |
A292059 | X, 1, 8, 42, 104, 251, 464, 852, 1360, 2165, ... |
Closed forms are summarized in the following table. The cycle graph was considered by Plavšić et al. (1993) and Babić et al. (2002) and the path graph by Plavšić et al. (1993).
Andrásfai graph | |
antiprism graph | |
cocktail party graph |
|
complete graph |
|
crossed prism graph | |
crown graph |
|
cycle graph |
|
gear graph | |
grid graph |
|
grid graph |
|
halved cube graph | |
hypercube graph |
|
Möbius ladder | |
Mycielski graph |
|
path graph |
|
rook graph |
|
star graph |
|
sun graph | |
sunlet graph |
|
triangular graph | |
wheel graph |
REFERENCES
Babić, D.; Klein, D. J.; Lukovits, I.; Nikolić, S.; and Trinajstić, N. "Resistance-Distance Matrix: A Computational Algorithm and Its Applications." Int. J. Quant. Chem. 90, 166-176, 2002.
Devillers, J. and Balaban, A. T. (Eds.). Topological Indices and Related Descriptors in QSAR and QSPR. Amsterdam, Netherlands: Gordon and Breach, pp. 26 and 108-109, 1999.
Hosoya, H. "Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons." Bull. Chem. Soc. Japan 44, 2322-2239, 1971.
Plavšić, D.; Nikolić, S.; Trinajstić, N.; and Mihalić, Z. "On the Harary Index for the Characterization of Chemical Graphs." J. Math. Chem. 12, 235-250, 1993.
Sloane, N. J. A. Sequence OEIS A193217 in "The On-Line Encyclopedia of Integer Sequences."Wiener, H. J. "Structural Determination of Paraffin Boiling Points." J. Amer. Chem. Soc. 69, 17-20, 1947.
Wiener, H. "Influence of Interatomic Forces on Paraffin Properties." J. Chem. Phys. 15, 766, 1947.Wiener, H. "Vapor Pressure-Temperature Relationships Among the Branched Paraffin Hydrocarbons." J. Phys. Chem. 52, 425-430, 1948.
Wiener, H. "Relation of the Physical Properties of the Isomeric Alkanes to Molecular Structure. Surface Tension, Specific Dispersion, and Critical Solution Temperature in Aniline." J. Phys. Chem. 52, 1082-1089, 1948.
Zerovnik, J. "Szeged Index of Symmetric Graphs." J. Chem. Inf. Comput. Sci. 39, 77-80, 1999.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
