

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Harary Index
المؤلف:
Devillers, J. and Balaban, A. T
المصدر:
Topological Indices and Related Descriptors in QSAR and QSPR. Amsterdam, Netherlands: Gordon and Breach
الجزء والصفحة:
...
7-4-2022
3312
Harary Index
The Harary index of a graph on
vertices was defined by Plavšić et al. (1993) as
|
(1) |
where
|
(2) |
is the reciprocal of the graph distance matrix (Plavšić et al. 1993; Devillers and Balaban, p. 80, 2000).
Some care is needed, since while some authors include the leading factor of 1/2 (e.g., Plavšić et al. 1993, Mercader et al. 2001), others omit it (e.g., Devillers and Balaban 1999, pp. 111 and 202).
Unless otherwise stated, hydrogen atoms are usually ignored in the computation of such indices as organic chemists usually do when they write a benzene ring as a hexagon (Devillers and Balaban 1999, p. 25).
The following table summarizes values of the Harary index for various special classes of graphs.
| graph class | OEIS | |
| Andrásfai graph | A000000/A000000 | 1, 15/2, 20, 77/2, 63, 187/2, 130, 345/2, 221, ... |
| antiprism graph | A000000/A000000 | X, X, 27/2, 22, 95/3, 42, 637/12, 194/3, 384/5, ... |
| Apollonian network | A000000/A000000 | 6, 18, 80, 470, 3248, 122106/5, 3394391/20, 6406407/20, ... |
| bishop graph |
A296197 | 0, 2, 13, 42, 102, 208, 379, 636, 1004, 1510, ... |
| black bishop graph |
A296198 | 0, 1, 8, 21, 55, 104, 197, 318, 514, 755, ... |
| cocktail party graph |
A000000/A000000 | 0, 5, 27/2, 26, 85, 126, 175, 232, 297, 370, ... |
| complete bipartite graph |
A000326 | 2, 5, 12, 44, 70, 102, 140, 184, ... |
| complete graph |
A000217 | 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, ... |
| complete tripartite graph |
A000000/A000000 | 3, 27/2, 63, 114, 180, 261, ... |
| A000000/A000000 | 58/3, 39, 368/3, 514/3, 1116/5, 4166/15, 35128/105, ... | |
| crown graph | A000000/A000000 | X, X, 10, 58/3, 95/3, 47, 196/3, 260/3, 111, 415/3, ... |
| cube-connected cycle graph | A000000/A000000 | X, X, 556/5, 57376/105, 162634/63, 34149904/3003, ... |
| cycle graph |
A160046/A160047 | X, X, 3, 5, 15/2, 10, 77/6, 47/3, 75/4, 131/6, ... |
| Fibonacci cube graph | A000000/A000000 | 1, 5/2, 22/3, 71/4, 216/5, 1219/12, 25033/105, ... |
| folded cube graph | A000000/A000000 | X, 1, 6, 22, 80, 808/3, 2800/3, 9488/3, 11072, ... |
| gear graph | A000000/A000000 | X, X, 29/2, 133/6, 125/4, 167/4, 161/3, 67, 327/4, ... |
| grid graph |
A296191/A296192 | 0, 5, 133/6, 293/5, 3399/28, 137111/630, 140351/396, ... |
| grid graph |
A000000/A000000 | 0, 58/3, 2402/15, 30617/45, 7168769/3465, ... |
| halved cube graph | A290347/A290348 | 0, 1, 6, 26, 100, 1096/3, 3920/3, 13936/3, 16544, ... |
| Hanoi graph | A000000/A000000 | 3, 22, 4276/35, 1835837/3003, 175359949924361/60168147039, ... |
| helm graph | A000000/A000000 | 29/2, 133/6, 125/4, 167/4, 161/3, 67, 327/4, ... |
| hypercube graph |
A290343/A290344 | 1, 5, 58/3, 206/3, 3548/15, 12136/15, 291824/105, ... |
| Keller graph |
A296189 | 0, 80, 1552, 27264, 460544, 7634944, ... |
| king graph |
A144945 | 0, 6, 28, 76, 160, 290, 476, 728, 1056, 1470, ... |
| knight graph |
A000000/A000000 | 0, 0, 47/3, 309/5, 150, 1769/6, 7724/15, 24733/30, ... |
| Menger sponge graph | A000000/A000000 | 1147/15, 207460203161/19684665, ... |
| Möbius ladder | A000000/A000000 | X, X, 12, 20, 85/3, 38, 287/6, 176/3, 348/5, 244/3, ... |
| Mycielski graph | A296193/A000000 | 0, 1, 15/2, 75/2, 162, 1317/2, 2610, 20505/2, 40212, ... |
| odd graph |
A000000 | 0, 3, 30, 280, 2730, 57057/2, 635635/2, ... |
| pan graph | A000000/A000000 | X, X, 5, 22/3, 61/6, 155/12, 16, 571/30, 1339/60, ... |
| path graph |
A160048/A160049 | 0, 2, 5, 26/3, 77/6, 87/5, 223/10, 962/35, ... |
| permutation star graph |
A296190/A296057 | 0, 1, 10, 123, 2202, 59040, 2287680, 121394000, ... |
| prism graph |
A000000/A000000 | X, X, 12, 58/3, 85/3, 75/2, 287/6, 874/15, ... |
| queen graph |
A296196 | 0, 6, 32, 98, 230, 460, 826, 1372, 2148, 3210, ... |
| rook complement graph |
A092364 | 0, 2, 27, 96, 250, 540, 1029, 1792, 2916, 4500, ... |
| rook graph |
A085740 | X, 5, 54, 168, 400, 810, 1470, 2464, 3888, 5850, ... |
| Sierpiński carpet graph | A000000/A000000 | 47/3, 23255059/51480, ... |
| Sierpiński sieve graph | A000000/A000000 | 3, 12, 227/4, 5553/20, 161390213/120120, ... |
| Sierpiński tetrahedron graph | A000000/A000000 | 6, 69/2, 1055/4, 599803/280, 279423163/16016, ... |
| star graph |
A160050/A130658 | 0, 1, 5/2, 9/2, 7, 10, 27/2, 35/2, 22, 27, ... |
| sun graph | A000000/A000000 | X, X, 10, 97/6, 95/4, 158/5, 2429/60, 743/15, ... |
| sunlet graph |
A000000/A000000 | X, X, 10, 97/3, 95/2, 316/5, 2429/30, 1486/15, 594/5, ... |
| tetrahedral graph | A000000/A000000 | X, X, 415/3, 2345/6, 2800/3, 1981, 3850, 6985, 11990, ... |
| torus grid graph |
A000000/A000000 | X, X, 27, 206/3, 875/6, 1287/5, 12691/30, 66964/105, ... |
| transposition graph | A296194 | 0, 1, 12, 162, 3010, 81000, 3105396, 162469104, ... |
| triangular graph | A000000/A000000 | X, 0, 3, 27/2, 75/2, 165/2, 315/2, 273, 441, 675, 990, ... |
| triangular grid graph | A027480 | 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, ... |
| web graph | A000000/A000000 | X, X, 45/2, 217/6, 635/12, 703/10, 1799/20, 110, ... |
| wheel graph |
A000000/A000000 | 6, 9, 25/2, 33/2, 21, 26, 63/2, 75/2, 44, 51, 117/2, ... |
| white bishop graph |
A296200 | 1, 5, 21, 47, 104, 182, 318, 490, 755, ... |
Closed forms for some special classes are summarized in the following table. Here, is a harmonic number,
is a Catalan number,
is a Lerch transcendent,
is a generalized hypergeometric function, and
is a Stirling number of the first kind.
| graph | Harary index |
| Andrásfai graph | |
| antiprism graph | |
| bishop graph |
|
| black bishop graph |
|
| cocktail party graph |
|
| complete bipartite graph |
|
| complete bipartite graph |
|
| complete graph |
|
| complete tripartite graph |
|
| crown graph |
|
| cycle graph |
|
| empty graph |
0 |
| gear graph |
|
| grid graph |
|
| halved cube graph |
|
| helm graph | |
| hypercube graph |
|
| Keller graph | |
| king graph |
|
| Möbius ladder |
|
| Mycielski graph |
|
| pan graph | |
| path graph |
|
| prism graph |
|
| queen graph |
|
| rook complement graph |
|
| rook graph |
|
| star graph |
|
| sun graph | |
| sunlet graph |
|
| tetrahedral graph | |
| torus grid graph |
|
| transposition graph | |
| triangular graph | |
| triangular grid graph | |
| web graph | |
| wheel graph |
|
| white bishop graph |
REFERENCES
Devillers, J. and Balaban, A. T. (Eds.). Topological Indices and Related Descriptors in QSAR and QSPR. Amsterdam, Netherlands: Gordon and Breach, pp. 40, 111, 202, and 227, 1999.
Diudea, M. V.; Ivanciuc, T.; Nikolić, S.; and Trinajstić, N. "Matrices of Reciprocal Distance, Polynomials and Derived Numbers." MATCH (Commun. Math. Comput. Chem.) 35, 41-64, 1997.
Ivanciuc, O.; Balaban, T.-S.; and Balaban, A. T. "Design of Topological Indices. Part 4. Reciprocal Distance Matrix, Related Local Vertex Invariants and Topological Indices." J. Math. Chem. 12, 309-318, 1993.
Mercader, E.; Castro, E. A.; and Toropov, A. A. "Maximum Topological Distances Based Indices as Molecular Descriptors for QSPR. 4. Modeling the Enthalpy of Formation of Hydrocarbons from Elements." Int. J. Mol. Sci. 2, 121-132, 2001.
Mihalić, Z. and Trinajstić, N. "A Graph Theoretical Approach to Structure-Property Relationships." J. Chem. Educ. 69, 701-712, 1992.
Plavšić, D.; Nikolić, S.; Trinajstić, N.; and Mihalić, Z. "On the Harary Index for the Characterization of Chemical Graphs." J. Math. Chem. 12, 235-250, 1993.
Sloane, N. J. A. Sequences A000217, A160046, A160047, A160048, A160049, A160050, A290343, A290344, A290347, and A290348 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)