تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Toroidal Graph
المؤلف:
Bartlett, P
المصدر:
"Lecture 5: Toroidal Graphs." CCS Discrete III, Week 10, UCSB. 2015.
الجزء والصفحة:
...
6-4-2022
3166
Toroidal Graph
Every planar graph (i.e., graph with graph genus 0) has an embedding on a torus. In contrast, toroidal graphs are embeddable on the torus, but not in the plane, i.e., they have graph genus 1. Equivalently, a toroidal graph is a nonplanar graph with toroidal crossing number 0, i.e., a nonplanar graph that can be embedded on the surface of a torus with no edge crossings.
A graph with graph genus 2 is called double-toroidal (West 2000, p. 266).
Examples of toroidal graphs include the complete graphs and
and complete bipartite graph
(West 2000, p. 267).
When it exists, the dual graph of a toroidal graph (on the torus) is also toroidal. Examples of such pairs include the complete graph and Heawood graph, as well as the Dyck graph and Shrikhande graph.
A (topological) obstruction for a surface is a graph
with minimum degree at least three that is not embeddable on
but for every edge
of
,
(
with edge
deleted) is embeddable on
. A minor-order obstruction
has the additional property that for every edge
of
,
(
with edge
contracted) is embeddable on
(Myrvold and Woodcock 2018). The complete list of forbidden graph minors for toroidal embedding of a graph is not known, but thousands of obstructions are known (Neufeld and Myrvold 1997, Chambers 2002, Woodcock 2007; cf. Mohar and Skoda 2020). Chambers (2002) found
topological obstructions and
minor order obstructions that include those on up to eleven vertices, the 3-regular ones on up to 24 vertices, the disconnected ones and those with a cut-vertex. Myrvold and Woodcock (2018) found
forbidden topological minors and
forbidden minors. In addition, Gagarin et al. (2009) found four forbidden minors and eleven forbidden graph expansions for toroidal graphs possessing no
minor and proved that the lists are sufficient.
The numbers of toroidal graphs on , 2, ... nodes are 0, 0, 0, 0, 1, 14, 222, 5365, ... (OEIS A319114), and the corresponding numbers of connected toroidal graphs are 0, 0, 0, 0, 1, 13, 207, 5128, ... (OEIS A319115; E. Weisstein, Sep. 10, 2018).
A toroidal graph has graph genus , so the Poincaré formula gives the relationship between vertex count
, edge count
, and face count
as
(1) |
However, a toroidal graph also satisfies
(2) |
as can be derived by taking the sum over every face of the number of edges in each face. Since there are at least 3 edges in a face, this sum is bounded below by . On the other hand, because each edge bounds exactly two faces, its is also exactly
(Bartlett 2015). Combining these two formulas gives the inequality
(3) |
which must hold for a graph to be toroidal (West 2000, p. 268).
If is also true that for a toroidal graph,
(4) |
where is the minimum vertex degree. This can be derived similarly as above by summing the degree of each vertex over all of the vertices. This sum must be greater than
by the definition of minimum vertex degree, but it is also equal to
(Bartlett 2015).
Plugging the above two inequalities into the Poincaré formula then gives
(5) |
so for any toroidal graph (Bartlett 2015).
Duke and Haggard (1972; Harary et al. 1973) gave a criterion for the genus of all graphs on 8 and fewer vertices. Define the double-toroidal graphs
(6) |
|||
(7) |
|||
(8) |
where denotes
minus the edges of
. Then a subgraph
of
is toroidal if it contains a Kuratowski graph (i.e., is nonplanar) but does not contain any
for
.
REFERENCES
Bartlett, P. "Lecture 5: Toroidal Graphs." CCS Discrete III, Week 10, UCSB. 2015.
http://web.math.ucsb.edu/~padraic/ucsb_2014_15/ccs_discrete_s2015/ccs_discrete_s2015_lecture5.pdf.Chambers, J. "Hunting for Torus Obstructions." Master's thesis. Dept. of Computer Science, University of Victoria, 2002.
Duke, R. A.; and Haggard, G. "The Genus of Subgraphs of ." Israel J. Math. 11, 452-455, 1972.
Gagarin, A.; Myrvold, W.; and Chambers, J. "The Obstructions for Toroidal Graphs with no 's." Disc. Math. 309, 3625-3631, 2009.
Harary, F.; Kainen, P. C.; Schwenk, A. J.; and White, A. T. "A Maximal Toroidal Graph Which Is Not a Triangulation." Math. Scand. 33, 108-112, 1973.
Mohar, B. and Škoda, P. "Excluded Minors for the Klein Bottle I. Low Connectivity Case." 1 Feb 2020.
https://arxiv.org/abs/2002.00258.Myrvold, W. and Woodcock, J. "A Large Set of Torus Obstructions and How They Were Discovered." Electronic J. Comb. 25, P1.16, 2018.
Neufeld, E. and Myrvold, W. "Practical Toroidality Testing." In Proceedings of the Eigth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '97. Society for Industrial and Applied Mathematics, pp. 574-580, 1997.
Riskin, A. "On the Nonembeddability and Crossing Numbers of Some Toroidal Graphs on the Klein Bottle." Disc. Math. 234, 77-88, 2001.
Sloane, N. J. A. Sequences A319114 and A319115 in "The On-Line Encyclopedia of Integer Sequences."Thomassen, C. "Tilings of the Torus and the Klein Bottle and Vertex-Transitive Graphs on a Fixed Surface." Trans. Amer. Math. Soc. 323, 605-635, 1991.
West, D. B. "Surfaces of Higher Genus." Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 266-269, 2000.
Woodcock, J. "A Faster Algorithm for Torus Embedding." Master's thesis. Dept. of Computer Science, University of Victoria, 2007.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
