تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Smallest Cubic Crossing Number Graph
المؤلف:
Clancy, K.; Haythorpe, M.; Newcombe, A.; and Pegg, E. Jr
المصدر:
"There Are No Cubic Graphs on 26 Vertices with Crossing Number 10 or 11." Preprint. 2019.
الجزء والصفحة:
...
3-4-2022
1785
The smallest cubic graphs with graph crossing number have been termed "crossing number graphs" or
-crossing graphs by Pegg and Exoo (2009).
The -crossing graphs are implemented in the Wolfram Language as GraphData["CrossingNumberGraphNA"], with N being a number and X a letter, for example 3C for the Heawood graph or 8B for cubic symmetric graph
.
The following table summarizes and updates the smallest cubic graphs having given crossing number, correcting Pegg and Exoo (2009) by and by omitting two of the three unnamed 24-node graphs (CNG 8D and CNG 8E) given as having crossing number 8 (but which actually have crossing number 7), noting that the 26-node graph here called CNG 9A and labeled as "McGee + edge" (corresponding to one of two certain edge insertions in the McGee graph) actually has (not 10), and adding the edge-excised Coxeter graph as CNG 9 B. In addition, the 28-node graphs CNG 10A with crossing number 10 (corresponding to a double edge insertion in the McGee graph or edge excision from the Levi graph as constructed by Ed Pegg on Apr. 5, 2019) and CNG 10B (from Clancy et al. 2019) are added, as is the 30-node graph CNG 12A with crossing number 12 communicated by M. Haythorpe to E. Pegg on or around Apr. 10, 2019 which is constructible as one of eight possible edge insertions on CNG 10A (Clancy et al. 2019).
For all graphs in this table, it appears that .
For = 0, 1, 2, ..., there are 1, 1, 2, 8, 2, 2, 3, 4, 3, ... (OEIS A307450) distinct crossing number graphs (correcting Pegg and Exoo 2009), illustrated above. The number of nodes in the smallest cubic graph with crossing number
, 1, ... are 4, 6, 10, 14, 16, 18, 20, 22, 24, 26, 28, 28, 30?, 30?, ... (OEIS A110507).
count | |||
0 | 4 | 1 | tetrahedral graph |
1 | 6 | 1 | utility graph |
2 | 10 | 2 | Petersen graph, CNG 2B |
3 | 14 | 8 | Heawood graph, |
4 | 16 | 2 | Möbius-Kantor graph, 8-crossed prism graph |
5 | 18 | 2 | Pappus graph, CNG 5B |
6 | 20 | 3 | Desargues graph, CNG 6B, CNG 6C |
7 | 22 | 4 | CNG 7A, CNG 7B, CNG 7C, CNG 7 D |
8 | 24 | 3 | McGee graph, Nauru graph, CNG 8C |
9 | 26 | 3? | |
10 | 28 | 2? | CNG 10A (McGee + double edge insertion), CNG 10B |
11 | 28 | 1? | Coxeter graph |
12 | 30? | 1? | CNG 12A (CNG 10A + edge insertion) |
13 | 30? | 1? | Levi graph |
14 | 36? | 1? | |
15 | 40? | 1? |
Clancy et al. (2019) proved that the smallest cubic graph with graph crossing number 11 is the Coxeter graph, settling in the affirmative a conjecture of Pegg and Exoo (2009).
Clancy, K.; Haythorpe, M.; Newcombe, A.; and Pegg, E. Jr. "There Are No Cubic Graphs on 26 Vertices with Crossing Number 10 or 11." Preprint. 2019.
Pegg, E. Jr. and Exoo, G. "Crossing Number Graphs." Mathematica J. 11, 161-170, 2009.
https://www.mathematica-journal.com/data/uploads/2009/11/CrossingNumberGraphs.pdf.Sloane, N. J. A. Sequences A110507 and A307450 in "The On-Line Encyclopedia of Integer Sequences."