1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Moser Spindle

المؤلف:  Bondy, A. and Murty, U. S. R

المصدر:  Graph Theory. Berlin: Springer-Verlag, 2008.

الجزء والصفحة:  ...

30-3-2022

1898

Moser Spindle

MoserSpindle

The Moser spindle is the 7-node unit-distance graph illustrated above (Read and Wilson 1998, p. 187). It is sometimes called the Hajós graph (e.g., Bondy and Murty 2008. p. 358), though this term is perhaps more commonly applied to the Sierpiński sieve graph S_2.

It is implemented in the Wolfram Language as GraphData["MoserSpindle"].

MoserSpindleEmbeddings

A few other (non-unit) embeddings of the Moser spindle are illustrated above.

The Moser spindle has chromatic number 4 (as does the Golomb graph), meaning the chromatic number of the plane must be at least four, thus establishing a lower bound on the Hadwiger-Nelson problem. After a more than 50-year gap, the first unit-distance graph raising this bound (the de Grey graph with chromatic number 5) was constructed by de Grey (2018).


REFERENCES

Bondy, A. and Murty, U. S. R. Graph Theory. Berlin: Springer-Verlag, 2008.

de Grey, A. D. N. J. "The Chromatic Number of the Plane Is at Least 5." Geombinatorics 28, No. 1, 18-31, 2018.

Moser, L. and Moser, W. "Problem 10." Canad. Math. Bull. 4, 187-189, 1961.

Read, R. C. and Wilson, R. J. An Atlas of Graphs. Oxford, England: Oxford University Press, 1998.

Soifer, A. "The Hadwiger-Nelson Problem." In Open Problems in Mathematics (Ed. J. F. Nash, Jr. and M. Th. Rassias). Switzerland: Springer, p. 442, 2016.

Soifer, A. The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of Its Creators. New York: Springer, 2008.

EN

تصفح الموقع بالشكل العمودي