x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Traveling Salesman Constants
المؤلف: Applegate, D. L.; Bixby, R. E.; Chvátal, V.; Cook, W.; Espinoza, D. G.; Goycoolea, M.; and Helsgaun, K.
المصدر: Certification of an Optimal TSP Tour Through 85,900 Cities." Oper. Res. Lett. 37
الجزء والصفحة: ...
3-3-2022
1696
Let be the smallest tour length for points in a -D hypercube. Then there exists a smallest constant such that for all optimal tours in the hypercube,
(1) |
and a constant such that for almost all optimal tours in the hypercube,
(2) |
These constants satisfy the inequalities
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
(Fejes Tóth 1940, Verblunsky 1951, Few 1955, Beardwood et al. 1959), where
(10) |
is the gamma function, is an expression involving Struve functions and Bessel functions of the second kind,
(11) |
(OEIS A086306; Karloff 1989), and
(12) |
(OEIS A086307; Goddyn 1990).
In the limit ,
(13) |
|||
(14) |
|||
(15) |
and
(16) |
where
(17) |
and is the best sphere packing density in -D space (Goddyn 1990, Moran 1984, Kabatyanskii and Levenshtein 1978). Steele and Snyder (1989) proved that the limit exists.
Now consider the constant
(18) |
so
(19) |
Nonrigorous numerical estimates give (Johnson et al. 1996) and (Percus and Martin 1996).
A certain self-avoiding space-filling function is an optimal tour through a set of points, where can be arbitrarily large. It has length
(20) |
(OEIS A073008), where is the length of the curve at the th iteration and is the point-set size (Norman and Moscato 1995).
Applegate, D. L.; Bixby, R. E.; Chvátal, V.; Cook, W.; Espinoza, D. G.; Goycoolea, M.; and Helsgaun, K. "Certification of an Optimal TSP Tour Through 85,900 Cities." Oper. Res. Lett. 37, 11-15, 2009.
Beardwood, J.; Halton, J. H.; and Hammersley, J. M. "The Shortest Path Through Many Points." Proc. Cambridge Phil. Soc. 55, 299-327, 1959.
Chartrand, G. "The Salesman's Problem: An Introduction to Hamiltonian Graphs." §3.2 in Introductory Graph Theory. New York: Dover, pp. 67-76, 1985.
Fejes Tóth, L. "Über einen geometrischen Satz." Math. Zeit. 46, 83-85, 1940.
Few, L. "The Shortest Path and the Shortest Road Through Points." Mathematika 2, 141-144, 1955.
Finch, S. R. "Traveling Salesman Constants." §8.5 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 497-503, 2003.
Flood, M. "The Travelling Salesman Problem." Operations Res. 4, 61-75, 1956.Goddyn, L. A. "Quantizers and the Worst Case Euclidean Traveling Salesman Problem." J. Combin. Th. Ser. B 50, 65-81, 1990.
Johnson, D. S.; McGeoch, L. A.; and Rothberg, E. E. "Asymptotic Experimental Analysis for the Held-Karp Traveling Salesman Bound." In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms. Held in San Francisco, California, January 22-24, 1995. Philadelphia, PA: ACM, pp. 341-350, 1996.
Kabatyanskii, G. A. and Levenshtein, V. I. "Bounds for Packing on a Sphere and in Space." Problems Inform. Transm. 14, 1-17, 1978.
Karloff, H. J. "How Long Can a Euclidean Traveling Salesman Tour Be?" SIAM J. Disc. Math. 2, 91-99, 1989.
Moran, S. "On the Length of Optimal TSP Circuits in Sets of Bounded Diameter." J. Combin. Th. Ser. B 37, 113-141, 1984.
Moscato, P. "Fractal Instances of the Traveling Salesman Constant." http://www.ing.unlp.edu.ar/cetad/mos/FRACTAL_TSP_home.html.Norman, M. G. and Moscato, P. "The Euclidean Traveling Salesman Problem and a Space-Filling Curve." Chaos Solitons Fractals 6, 389-397, 1995.
Percus, A. G. and Martin, O. C. "Finite Size and Dimensional Dependence in the Euclidean Traveling Salesman Problem." Phys. Rev. Lett. 76, 1188-1191, 1996.
Sloane, N. J. A. Sequences A073008, A086306, and A086307 in "The On-Line Encyclopedia of Integer Sequences."Steele, J. M. and Snyder, T. L. "Worst-Case Growth Rates of Some Classical Problems of Combinatorial Optimization." SIAM J. Comput. 18, 278-287, 1989.
Verblunsky, S. "On the Shortest Path Through a Number of Points." Proc. Amer. Math. Soc. 2, 904-913, 1951.