

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Pósa,s Conjecture
المؤلف:
Bollobás, B.
المصدر:
Extremal Graph Theory. New York: Academic Press, 1978.
الجزء والصفحة:
...
2-3-2022
3129
Pósa's Conjecture
Dirac (1952) proved that if the minimum vertex degree for a graph
on
nodes, then
contains a Hamiltonian cycle (Bollobás 1978, Komlós et al. 1996).
In 1962, Pósa conjectured that contains a square of a Hamiltonian cycle if
(Erdős 1964, p. 159; Komlós et al. 1996), where a graph
contains the square of a Hamiltonian cycle if there is a Hamiltonian cycle
such that
, for
, 2, ...,
.
Komlós et al. (1996) proved that there exists a natural number such that if a graph
has order
and minimum vertex degree at least
, then
contains the square of a Hamiltonian cycle. This proved Pósa's conjecture (Erdős 1964) for sufficiently large
. Kierstead and Quintana (1998) proved Pósa's conjecture for graphs
containing a 4-clique
.
The conjecture was generalized by Seymour (1974) to state that if , then
contains the
th power of a Hamiltonian cycle (Komlós et al. 1996).
REFERENCES
Bollobás, B. Extremal Graph Theory. New York: Academic Press, 1978.
Dirac, G. A. "Some Theorems on Abstract Graphs." Proc. London Math. Soc. 2, 69-81, 1952.
Erdős, P. "Problem 9." In Theory of Graphs and Its Applications, Proceedings of the Symposium held in Smolenice in June 1963 (Ed. M. Fiedler). Prague, Czechoslovakia: Publishing House of the Czechoslovak Academy of Sciences, p. 159, 1964.
Fan, G. and Kierstead, H. A. "Hamiltonian Square-Paths." J. Combin. Theory Ser. B 67, 167-182, 1996.
Kierstead, H. A. and Quintana, J. "Square Hamiltonian Cycles in Graphs with Maximal 4-Cliques." Disc. Math. 178, 81-92, 1998.
Komlós, J.; Sárkőzy, G. N.; and Szemerédi, E. "On the Square of a Hamiltonian Cycle in Dense Graphs." In Random Structures Algorithms 9, 193-211, 1996.
Seymour, P. Problem Section in Combinatorics: Proceedings of the British Combinatorial Conference, 1973 (Ed. T. P. McDonough and V. C. Mavron). Cambridge, England: Cambridge University Press, pp. 201-202, 1974.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)