1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Graph Cycle

المؤلف:  Ahrens, W

المصدر:  "Über das Gleichungssystem einer Kirchhoffschen galvanischen Stromverzweigung." Math. Ann. 49

الجزء والصفحة:  ...

28-2-2022

2864

Graph Cycle

A cycle of a graph G, also called a circuit if the first vertex is not specified, is a subset of the edge set of G that forms a path such that the first node of the path corresponds to the last. A maximal set of edge-disjoint cycles of a given graph g can be obtained using ExtractCycles[g] in the Wolfram Language package Combinatorica` .

A cycle that uses each graph vertex of a graph exactly once is called a Hamiltonian cycle.

A graph containing no cycles of length three is called a triangle-free graph, and a graph containing no cycles of length four is called a square-free graph.

A graph containing no cycles of any length is known as an acyclic graph, whereas a graph containing at least one cycle is called a cyclic graph. A graph possessing exactly one (undirected, simple) cycle is called a unicyclic graph. A connected acyclic graph is known as a tree, and a possibly disconnected acyclic graph is known as a forest.

The length of the shortest graph cycle (if any) in a given graph is known as the girth, and the length of a longest cycle is known as the graph circumference.

The minimum number of swaps between vertices in a random circular embedding of a cycle to put in its standard configuration is considered by Björner and Wachs (1982) and (Stanley 1999).

An acyclic graph is bipartite, and a cyclic graph is bipartite iff all its cycles are of even length (Skiena 1990, p. 213).

The number of (undirected) closed k-walks in a graph with adjacency matrix A is given by Tr(A^k), where Tr(A) denotes the matrix trace. In order to compute the number c_k of k-cycles, all closed k-walks that are not cycles must be subtracted. One would think that by analogy with the matching-generating polynomial, independence polynomial, etc., a cycle polynomial whose coefficients are the numbers of cycles of length k would be defined. While no such polynomial seems not to have been defined in the literature (instead, "cycle polynomials" commonly instead refers to a polynomial corresponding to cycle indices of permutation groups), they are defined in this work.

The number of k-cycles c_k is related to the matrix of path counts P_k by

 c_k=1/(2k)Tr(P_(k-1)A),

(1)

where Tr denotes the matrix trace and A is the adjacency matrix (Perepechko and Voropaev).

Graphs corresponding to closed walks of length k are known as k-cyclic graphs, or "C_k-graphs" for short. The numbers of C_k-graphs for k=3, 4, ... are 1, 3, 3, 10, 12, 35, 58, 160, 341, 958, 2444, 7242, 21190, 67217, 217335, ... (OEIS A081809; FlowProblems).

Harary and Manvel (1972) gave the following closed forms for small k:

6c_3 = Tr(A^3)

(2)

8c_4 = Tr(A^4)-2m-2sum_(i!=j)a_(ij)^((2))

(3)

= sum_(i)a_(ii)^((4))+sum_(i)a_(ii)^((2))-2sum_(i)sum_(j)a_(ij)^((2))

(4)

= Tr(A^4)+Tr(A^2)-2Tr(diag(A^2)^2)

(5)

= Tr(A^4)-2m-2sum_(i)d_i(d_i-1)

(6)

= Tr(A^4)+Tr(A^2)-2sum_(i)d_i^2

(7)

10c_5 = Tr(A^5)-5Tr(A^3)-5sum_(i=1)(sum_(j)a_(ij)-2)a_(ii)^((3))

(8)

(with c_4 variants from Perepechko and Voropaev), where m is the number of edges of the graph, a_(ij)^((k)) denotes the i,j element of A^kdiag(A) is the matrix formed from the diagonal elements of A, and d_i=a_(ii)^((2)) is the ith vertex degree. Alon et al. (1997) extended these results up to k=7, although with explicit formulas given only up to k=5. Exact formulas for c_6 and c_7 are given by

 12c_6=sum_(i)a_(ii)^((6))-3sum_(n=1)^n(a_(ii)^((3)))^2+9sum_(i)sum_(j)(a_(ij)^((2)))^2a_(ij)-6sum_(i)a_(ii)^((4))d_i+6sum_(i)a_(ii)^((4))-4sum_(i)a_(ii)^((3))+4sum_(i)d_i^3+3sum_(i)sum_(j)a_(ij)^((3))-12sum_(i)d_i^2+4sum_(i)d_i 
14c_7=Tr(A^7)-7sum_(i)a_(ii)^((4))a_(ii)^((3))+7sum_(i)sum_(j)(a_(ij)^((2)))^3a_(ij)-7sum_(i)a_(ii)^((5))d_i+21sum_(i)sum_(j)a_(ij)^((3))a_(ij)^((2))a_(ij)+7Tr(A^5)-28sum_(i)sum_(j)(a_(ij)^((2)))^2a_(ij)+7sum_(i)sum_(j)a_(ij)^((2))a_(ij)d_id_j+14sum_(i)a_(ii)^((3))d_i^2+7sum_(i)sum_(j)a_(ii)^((3))a_(ij)^((2))-77sum_(i)a_(ii)^((3))d_i+56Tr(A^3),

(9)

where d_i=a_(ii)^((2)) is the ith vertex degree (Perepechko and Voropaev; S. Perepechko, pers. comm., Jan. 4, 2014).

Khomenko and Golovko (1972) gave a formula giving the number of cycles of any length, but its computation requires computing and performing matrix operations involving all subsets up to size n-2, making it computationally expensive. A simplified and improved version of the Khomenko and Golovko formula is given by

 c_k=1/(2k)sum_(i=2)^k(-1)^(k-i)(n-i; n-k)sum_(|S|=n-i)Tr(A_S^k)

(10)

for k=3, 4, ..., n, where A_S^k is the kth matrix power of the submatrix of the adjacency matrix A with the subset S of rows and columns deleted (Perepechko and Voropaev). The case k=n therefore gives the number of Hamiltonian cycles.

Giscard et al. (2016) gave the formula for the number of undirected k-cycles in a graph G as

 c_k=((-1)^k)/(2k)sum_(H≺_(conn)G)(|N(H)|; k-|H|)(-1)^(|H|)Tr(A_H^k),

(11)

where the sum is over connected induced subgraphs H of GN(H) denotes the number of neighbors of H in G (namely vertices v of G which are not in H and such that there exists at least one edge from v to a vertex of H), Tr(A) denotes the matrix trace, and A_H^k is the kth matrix power of the adjacency matrix of the graph H.

Let nu denote the total number of undirected cycles in a graph and mu the circuit rank. Then

 mu<=nu<=2^mu-1

(12)

(Kirchhoff 1847, Ahrens 1897, König 1936, Volkmann 1996). The total numbers of undirected cycles for all simple graphs of orders n=1, 2, ... are 0, 0, 1, 13, 143, 1994, 39688, ... (OEIS A234601).

 mu(G)=nu(G)

(13)

iff any two cycles have no edge in common (Volkmann 1996). Among connected graphs, the equality therefore holds for (and only for) cactus graphs. Mateti and Deo (1976) proved that there are "essentially" only four graphs with nu=2^mu-1: the complete graphs K_3 and K_4, the complete bipartite graph K_(3,3), and K_4-e (Volkmann 1996).

The total number of undirected cycles also satisfies

 nu>=n(1/2delta-1)+1

(14)

and

 nu>=1/2delta(delta-1),

(15)

where n is the number of vertices and delta is the minimum vertex degree (Volkmann 1996).

The following table gives the number of undirected graph cycles for various classes of graphs.

graph OEIS sequence
Andrásfai graph A234602 0, 1, 29, 1014, 72273, 9842527, ...
antiprism graph A077263 X, X, 63, 179, 523, 1619, 5239, 17379, ...
bishop graph A234636 X, 0, 3, 106, 17367, 24601058, 638520866656, ...
(n,n)-black bishop graph A234603 X, X, X, 53, 12424, 12300529, ...
cocktail party graph K_(n×2) A167987 0, 1, 63, 2766, 194650, 21086055, 3257119761, ...
complete bipartite graph K_(n,n) A070968 0, 1, 15, 204, 3940, 113865, 4662231, ...
complete tripartite graph K_(n,n,n) A234616 1, 63, 6705, 1960804, 1271288295, 1541975757831, ...
complete graph K_n A002807 1, 7, 37, 197, 1172, 8018, ...
2n-crossed prism graph A234617 28, 107, 380, 1345, 4878, 18219, ...
crown graph A234618 1, 28, 586, 16676, 674171, 36729512, ...
cube-connected cycle A000000 X, X, 2664, ...
cycle graph C_n A000012 1, 1, 1, 1, 1, 1, 1, 1, ...
folded cube graph A234619 0, 0, 7, 204, 322248, ...
grid graph P_n square P_n A140517 X, 1, 13, 213, 9349, 122236, 487150371, ...
grid graph P_n square P_n square P_n A234620 X, 28, 3426491, ...
halved cube graph A234621 0, 0, 7, 2766, 4678134804, ...
Hanoi graph A000000 1, 11, 1761, ...
hypercube graph Q_n A085408 0, 1, 28, 14704, 51109385408, ...
(n,n)-king graph A234622 X, 7, 348, 136597, 545217435, 21964731190911, ...
(n,n)-knight graph A234623 X, 0, 1, 222, 128769, 959427728, ...
n-ladder graph A000217 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, ...
Möbius ladder M_n A020873 X, X, 15, 29, 53, 95, 171, 313, 585, ...
Mycielski graph A234625 0, 0, 1, 337, 445228418, ...
odd graph A301558 0, 1, 57, 872137842, ...
permutation star graph A000000 0, 0, 1, 5442, ...
prism graph Y_n A077265 14, 28, 52, 94, 170, ...
(n,n)-queen graph A234626 0, 7, 8215, 2080941496, 269529670654115055, ...
rook graph K_n square K_n A234624 0, 1, 312, 3228524, 6198979538330, ...
Sierpiński sieve graph A234634 1, 11, 1033, ...
sun graph A234627 X, X, 11, 44, 198, 1036, 6346, 45019, 364039, ...
sunlet graph C_n circledot K_1 A000000 X, X, 1, 1, 1, 1, 1, 1, 1, 1, ...
triangular graph A234629 0, 1, 63, 15703, 58520309, ...
web graph A077265 14, 28, 52, 94, 170, 312, 584, 1114, ...
wheel graph W_n A002061 7, 13, 21, 31, 43, 57, ...
(n,n)-white bishop graph A234630 X, X, X, 53, 4943, 12300529, ...

Closed forms for some of these classes of graphs are summarized in the following table.

graph formula
antiprism graph a_n=6a_(n-1)-11a_(n-2)+8a_(n-3)-3a_(n-4)+2a_(n-5)-a_(n-6)
complete bipartite graph K_(n,n) 1/2sum_(k=2)^(n)k!(k-1)!(n; k)^2
complete graph K_n 1/2sum_(k=3)^(n)(k-1)!(n; k)=1/4n[2_3F_1(1,1,1-n;2;-1)-n-1]
cycle graph C_n 1
ladder graph (n; 2)
Möbius ladder 1+2^n+n(n-1)
prism graph Y_n 2^n+n(n-1)
sunlet graph C_n circledot K_1 1
web graph f 2^n+n(n-1)
wheel graph W_n 2(n-1)

REFERENCES

Ahrens, W. "Über das Gleichungssystem einer Kirchhoffschen galvanischen Stromverzweigung." Math. Ann. 49, 311-324, 1897.

Alon, N.; Yuster, R.; and Zwick, U. "Finding and Counting Given Length Cycles." Algorithmica 17, 209-223, 1997.

Björner, A. and Wachs, M. "Bruhat Order of Coxeter Groups and Shellability." Adv. Math. 43, 87-100, 1982.

FlowProblem. "C_k-Graphs." http://flowproblem.ru/cycles/explicit-formulae/ck-graphs.Giscard, P.-L.; Kriege, N.; and Wilson, R. C. "A General Purpose Algorithm for Counting Simple Cycles and Simple Paths of Any Length." 16 Dec 2016. 

https://arxiv.org/pdf/1612.05531.pdf.Harary, F. and Manvel, B. "On the Number of Cycles in a Graph." Mat. Časopis Sloven. Akad. Vied 21, 55-63, 1971.

Karavaev, A. M. "FlowProblem: Statistics of Simple Cycles." http://flowproblem.ru/paths/statistics-of-simple-cycles.Khomenko, N. P. and Golovko, L. D. "Identifying Certain Types of Parts of a Graph and Computing Their Number." Ukr. Math. J. 24, 313-321, 1972.

Kirchhoff, G. "Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird." Ann. d. Phys. Chem. 72, 497-508, 1847.

König, D. Theorie der endlichen und unendlichen Graphen. Leipzig, Germany: Akademische Verlagsgesellschaft, 1936.

Mateti, P. and Deo, N. "On Algorithms for Enumerating All Circuits of a Graph." SIAM J. Comput. 5, 90-99, 1976.

Perepechko, S. N. and Voropaev, A. N. "The Number of Fixed Length Cycles in an Undirected Graph. Explicit Formulae in Case of Small Lengths."Skiena, S. "Cycles in Graphs." §5.3 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 188-202, 1990.

Sloane, N. J. A. Sequences A000012/M0003, A002061/M2638, A002807/M4420, A077263, A077265, A081809, and A234601 in "The On-Line Encyclopedia of Integer Sequences."Stanley, R. P. Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, 1999.

Volkmann, L. "Estimations for the Number of Cycles in a Graph." Per. Math. Hungar. 33, 153-161, 1996.

West, D. B. Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 5 and 20, 2000.

EN

تصفح الموقع بالشكل العمودي