تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Graph Cycle
المؤلف:
Ahrens, W
المصدر:
"Über das Gleichungssystem einer Kirchhoffschen galvanischen Stromverzweigung." Math. Ann. 49
الجزء والصفحة:
...
28-2-2022
2864
A cycle of a graph , also called a circuit if the first vertex is not specified, is a subset of the edge set of
that forms a path such that the first node of the path corresponds to the last. A maximal set of edge-disjoint cycles of a given graph
can be obtained using ExtractCycles[g] in the Wolfram Language package Combinatorica` .
A cycle that uses each graph vertex of a graph exactly once is called a Hamiltonian cycle.
A graph containing no cycles of length three is called a triangle-free graph, and a graph containing no cycles of length four is called a square-free graph.
A graph containing no cycles of any length is known as an acyclic graph, whereas a graph containing at least one cycle is called a cyclic graph. A graph possessing exactly one (undirected, simple) cycle is called a unicyclic graph. A connected acyclic graph is known as a tree, and a possibly disconnected acyclic graph is known as a forest.
The length of the shortest graph cycle (if any) in a given graph is known as the girth, and the length of a longest cycle is known as the graph circumference.
The minimum number of swaps between vertices in a random circular embedding of a cycle to put in its standard configuration is considered by Björner and Wachs (1982) and (Stanley 1999).
An acyclic graph is bipartite, and a cyclic graph is bipartite iff all its cycles are of even length (Skiena 1990, p. 213).
The number of (undirected) closed -walks in a graph with adjacency matrix
is given by
, where
denotes the matrix trace. In order to compute the number
of
-cycles, all closed
-walks that are not cycles must be subtracted. One would think that by analogy with the matching-generating polynomial, independence polynomial, etc., a cycle polynomial whose coefficients are the numbers of cycles of length
would be defined. While no such polynomial seems not to have been defined in the literature (instead, "cycle polynomials" commonly instead refers to a polynomial corresponding to cycle indices of permutation groups), they are defined in this work.
The number of -cycles
is related to the matrix of path counts
by
(1) |
where denotes the matrix trace and
is the adjacency matrix (Perepechko and Voropaev).
Graphs corresponding to closed walks of length are known as k-cyclic graphs, or "
-graphs" for short. The numbers of
-graphs for
, 4, ... are 1, 3, 3, 10, 12, 35, 58, 160, 341, 958, 2444, 7242, 21190, 67217, 217335, ... (OEIS A081809; FlowProblems).
Harary and Manvel (1972) gave the following closed forms for small :
(2) |
|||
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
(with variants from Perepechko and Voropaev), where
is the number of edges of the graph,
denotes the
element of
,
is the matrix formed from the diagonal elements of
, and
is the
th vertex degree. Alon et al. (1997) extended these results up to
, although with explicit formulas given only up to
. Exact formulas for
and
are given by
(9) |
where is the
th vertex degree (Perepechko and Voropaev; S. Perepechko, pers. comm., Jan. 4, 2014).
Khomenko and Golovko (1972) gave a formula giving the number of cycles of any length, but its computation requires computing and performing matrix operations involving all subsets up to size , making it computationally expensive. A simplified and improved version of the Khomenko and Golovko formula is given by
(10) |
for , 4, ...,
, where
is the
th matrix power of the submatrix of the adjacency matrix
with the subset
of rows and columns deleted (Perepechko and Voropaev). The case
therefore gives the number of Hamiltonian cycles.
Giscard et al. (2016) gave the formula for the number of undirected -cycles in a graph
as
(11) |
where the sum is over connected induced subgraphs of
,
denotes the number of neighbors of
in
(namely vertices
of
which are not in
and such that there exists at least one edge from
to a vertex of
),
denotes the matrix trace, and
is the
th matrix power of the adjacency matrix of the graph
.
Let denote the total number of undirected cycles in a graph and
the circuit rank. Then
(12) |
(Kirchhoff 1847, Ahrens 1897, König 1936, Volkmann 1996). The total numbers of undirected cycles for all simple graphs of orders , 2, ... are 0, 0, 1, 13, 143, 1994, 39688, ... (OEIS A234601).
(13) |
iff any two cycles have no edge in common (Volkmann 1996). Among connected graphs, the equality therefore holds for (and only for) cactus graphs. Mateti and Deo (1976) proved that there are "essentially" only four graphs with : the complete graphs
and
, the complete bipartite graph
, and
(Volkmann 1996).
The total number of undirected cycles also satisfies
(14) |
and
(15) |
where is the number of vertices and
is the minimum vertex degree (Volkmann 1996).
The following table gives the number of undirected graph cycles for various classes of graphs.
graph | OEIS | sequence |
Andrásfai graph | A234602 | 0, 1, 29, 1014, 72273, 9842527, ... |
antiprism graph | A077263 | X, X, 63, 179, 523, 1619, 5239, 17379, ... |
bishop graph | A234636 | X, 0, 3, 106, 17367, 24601058, 638520866656, ... |
A234603 | X, X, X, 53, 12424, 12300529, ... | |
cocktail party graph |
A167987 | 0, 1, 63, 2766, 194650, 21086055, 3257119761, ... |
complete bipartite graph |
A070968 | 0, 1, 15, 204, 3940, 113865, 4662231, ... |
complete tripartite graph |
A234616 | 1, 63, 6705, 1960804, 1271288295, 1541975757831, ... |
complete graph |
A002807 | 1, 7, 37, 197, 1172, 8018, ... |
A234617 | 28, 107, 380, 1345, 4878, 18219, ... | |
crown graph | A234618 | 1, 28, 586, 16676, 674171, 36729512, ... |
cube-connected cycle | A000000 | X, X, 2664, ... |
cycle graph |
A000012 | 1, 1, 1, 1, 1, 1, 1, 1, ... |
folded cube graph | A234619 | 0, 0, 7, 204, 322248, ... |
grid graph |
A140517 | X, 1, 13, 213, 9349, 122236, 487150371, ... |
grid graph |
A234620 | X, 28, 3426491, ... |
halved cube graph | A234621 | 0, 0, 7, 2766, 4678134804, ... |
Hanoi graph | A000000 | 1, 11, 1761, ... |
hypercube graph |
A085408 | 0, 1, 28, 14704, 51109385408, ... |
A234622 | X, 7, 348, 136597, 545217435, 21964731190911, ... | |
A234623 | X, 0, 1, 222, 128769, 959427728, ... | |
A000217 | 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, ... | |
Möbius ladder |
A020873 | X, X, 15, 29, 53, 95, 171, 313, 585, ... |
Mycielski graph | A234625 | 0, 0, 1, 337, 445228418, ... |
odd graph | A301558 | 0, 1, 57, 872137842, ... |
permutation star graph | A000000 | 0, 0, 1, 5442, ... |
prism graph |
A077265 | 14, 28, 52, 94, 170, ... |
A234626 | 0, 7, 8215, 2080941496, 269529670654115055, ... | |
rook graph |
A234624 | 0, 1, 312, 3228524, 6198979538330, ... |
Sierpiński sieve graph | A234634 | 1, 11, 1033, ... |
sun graph | A234627 | X, X, 11, 44, 198, 1036, 6346, 45019, 364039, ... |
sunlet graph |
A000000 | X, X, 1, 1, 1, 1, 1, 1, 1, 1, ... |
triangular graph | A234629 | 0, 1, 63, 15703, 58520309, ... |
web graph | A077265 | 14, 28, 52, 94, 170, 312, 584, 1114, ... |
wheel graph |
A002061 | 7, 13, 21, 31, 43, 57, ... |
A234630 | X, X, X, 53, 4943, 12300529, ... |
Closed forms for some of these classes of graphs are summarized in the following table.
graph | formula |
antiprism graph | |
complete bipartite graph |
|
complete graph |
|
cycle graph |
1 |
ladder graph | |
Möbius ladder | |
prism graph |
|
sunlet graph |
1 |
web graph f | |
wheel graph |
Ahrens, W. "Über das Gleichungssystem einer Kirchhoffschen galvanischen Stromverzweigung." Math. Ann. 49, 311-324, 1897.
Alon, N.; Yuster, R.; and Zwick, U. "Finding and Counting Given Length Cycles." Algorithmica 17, 209-223, 1997.
Björner, A. and Wachs, M. "Bruhat Order of Coxeter Groups and Shellability." Adv. Math. 43, 87-100, 1982.
FlowProblem. "-Graphs." http://flowproblem.ru/cycles/explicit-formulae/ck-graphs.Giscard, P.-L.; Kriege, N.; and Wilson, R. C. "A General Purpose Algorithm for Counting Simple Cycles and Simple Paths of Any Length." 16 Dec 2016.
https://arxiv.org/pdf/1612.05531.pdf.Harary, F. and Manvel, B. "On the Number of Cycles in a Graph." Mat. Časopis Sloven. Akad. Vied 21, 55-63, 1971.
Karavaev, A. M. "FlowProblem: Statistics of Simple Cycles." http://flowproblem.ru/paths/statistics-of-simple-cycles.Khomenko, N. P. and Golovko, L. D. "Identifying Certain Types of Parts of a Graph and Computing Their Number." Ukr. Math. J. 24, 313-321, 1972.
Kirchhoff, G. "Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird." Ann. d. Phys. Chem. 72, 497-508, 1847.
König, D. Theorie der endlichen und unendlichen Graphen. Leipzig, Germany: Akademische Verlagsgesellschaft, 1936.
Mateti, P. and Deo, N. "On Algorithms for Enumerating All Circuits of a Graph." SIAM J. Comput. 5, 90-99, 1976.
Perepechko, S. N. and Voropaev, A. N. "The Number of Fixed Length Cycles in an Undirected Graph. Explicit Formulae in Case of Small Lengths."Skiena, S. "Cycles in Graphs." §5.3 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 188-202, 1990.
Sloane, N. J. A. Sequences A000012/M0003, A002061/M2638, A002807/M4420, A077263, A077265, A081809, and A234601 in "The On-Line Encyclopedia of Integer Sequences."Stanley, R. P. Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, 1999.
Volkmann, L. "Estimations for the Number of Cycles in a Graph." Per. Math. Hungar. 33, 153-161, 1996.
West, D. B. Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 5 and 20, 2000.