1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Continuity-Jump Discontinuity

المؤلف:  Royden, H. L. and Fitzpatrick, P. M

المصدر:  Real Analysis. Pearson, 2010.

الجزء والصفحة:  ...

29-4-2018

2249

Continuity-Jump Discontinuity

 

A real-valued univariate function f=f(x) has a jump discontinuity at a point x_0 in its domain provided that

 lim_(x->x_0-)f(x)=L_1<infty
(1)

and

 lim_(x->x_0+)f(x)=L_2<infty
(2)

both exist and that L_1!=L_2.

The notion of jump discontinuity shouldn't be confused with the rarely-utilized convention whereby the term jump is used to define any sort of functional discontinuity.

JumpDiscontinuity

The figure above shows an example of a function having a jump discontinuity at a point in its domain.

Though less algebraically-trivial than removable discontinuities, jump discontinuities are far less ill-behaved than other types of singularities such as infinite discontinuities. This fact can be seen in a number of scenarios, e.g., in the fact that univariate monotone functions can have at most countably many discontinuities (Royden and Fitzpatrick 2010), the worst of which can be jump discontinuities (Zakon 2004).

JumpDiscontinuityMonotoneLine

Unsurprisingly, the definition given above can be generalized to include jump discontinuities in multivariate real-valued functions as well. For example, the function shown in this figure is the piecewise function

 t(x,y)={(x,x)   for x+y>1; (-5+x,-5+x)   for x+y<=1,
(3)

a function which is monotone in each of x and y separately and has jump discontinuity along the entire linex+y=1


REFERENCES:

Royden, H. L. and Fitzpatrick, P. M. Real Analysis. Pearson, 2010.

Zakon, E. Mathematical Analysis Volume 1. West Lafayette, IN: The Trilla Group, 2004. http://www.trillia.com/zakon-analysisI.html.

 .

EN

تصفح الموقع بالشكل العمودي