Read More
Date: 9-8-2016
![]()
Date: 13-7-2016
![]()
Date: 25-8-2016
![]() |
Momentum Perturbation
A particle of mass m moves in one dimension according to the Hamiltonian
(1)
(2)
All eigenfunctions ѱn(x) and eigenvalues En are known. Suppose we add a term to the Hamiltonian, where λ and m are constants and p is the momentum operator:
(3)
Derive an expression for the eigenvalues and eigenstates of the new Hamiltonian H.
SOLUTION
The first step is to rewrite the Hamiltonian by completing the square on the momentum operator:
(1)
The constant just shifts the zero of the momentum operator. The rewritten Hamiltonian in (1) suggests the perturbed eigenstates:
(2)
The action of the displaced momentum operator p + λ on the new eigenstates is
(3)
so the Hamiltonian gives
(4)
and the eigenvalues are simply
(5)
|
|
"إنقاص الوزن".. مشروب تقليدي قد يتفوق على حقن "أوزيمبيك"
|
|
|
|
|
الصين تحقق اختراقا بطائرة مسيرة مزودة بالذكاء الاصطناعي
|
|
|
|
|
قسم شؤون المعارف ووفد من جامعة البصرة يبحثان سبل تعزيز التعاون المشترك
|
|
|