المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

انواع الضرائب
6-4-2018
هل توجد أخبار تذم الشيعة على لسان الأئمة ؟ وما هو تفسيرها ؟
2023-06-24
العناية بالجسم
5-2-2018
القياس والاستحسان طريقتان صحيحتان للوصول الى الحكم الشرعي
20-11-2016
التجرد الموضوعي لكتابة التاريخ
19-4-2019
النشرة الإخبارية
15/11/2022

Giovanni Poleni  
  
975   02:23 صباحاً   date: 28-1-2016
Author : E de Tipaldo (ed.)
Book or Source : Poleni, Biografia degli Italiani illustri
Page and Part : ...


Read More
Date: 27-1-2016 725
Date: 27-1-2016 970
Date: 29-1-2016 887

Born: 23 August 1683 in Venice, Venetian States (now Italy)
Died: 15 November 1761 in Padua, Venetian States (now Italy)

 

Giovanni Poleni's father was Jacopo Poleni who was given the title of marquis of the Holy Roman Empire by Emperor Leopold I. Giovanni inherited his father's title. As a young man Poleni showed brilliance in a wide variety of different subjects and it was clear that he was extraordinarily talented. He first studied philosophy and then theology in Venice. His parents encouraged him to begin a judicial career but, after being introduced to mathematics and science by his father, it was clear that he had now found the subjects which gave him most satisfaction

In 1708 he married Orsola Roberti who was from the high ranking Bassano del Grappa family. He accepted the chair of Astronomy and Meteorology at the University of Padua in 1709. For over 40 years he kept outstandingly accurate meteorological records which have proved invaluable to later scientists. He published Miscellanea: de barometris et thermometris; de machina quadam arithmetica; de sectionibus conicis in horologiis solaribus describendis, a collection of dissertations on physics, in 1709. As well as studying the barometer and thermometer, this work includes Poleni's description of a calculating machine [1]:-

... based on reports that Poleni had received of those of Pascal and Leibniz. Poleni actually built this machine which was reportedly very simple and easy to operate; but when he heard of another machine presented to the Emperor by the Viennese mechanician Brauer, he destroyed his own and never rebuilt it.

He next published De vorticibus coelestibus dialogus: qui accedit quadratura circuli Archimedis in 1712.

In 1715 he became professor of physics, in addition holding the chair of Astronomy and Meteorology. Poleni was invited by the Venetian Senate to investigate the problem of hydraulics relating to the irrigation of Lower Lombardy. The river Adda leaves Lake Como at Lecco and crosses the Lombardy Plain where skilled engineering can use it to create excellent irrigation. But Poleni had also to worry about the river flooding, so his irrigation schemes had to have constructions to control floods. He was appointed to the chair of mathematics at Padua in 1719 which had been vacated by Nicolaus (II) Bernoulli. His inaugural lecture was De physices in rebus mathematicis utilitate: praelectio which was particularly significant and, although published first in 1716, it was reprinted in 1720 after his inaugural lecture. A major treatise on hydraulics and hydrodynamics De motu aquae mixto libri duo (1717) describes estuaries, ports, and rivers. A year later, in 1718, he reported on his experiments with water in De castellis per quae derivantur aquae fluviorum habentibus latera convergentia liber.

In fact Padua had been fortunate to have had Jakob Hermann teaching there from 1707 to 1713 and he had introduced the methods of Leibniz' differential and integral calculus to the university. Poleni was familiar with the new differential and integral calculus and with the natural philosophy of Newton. A fascinating glimpse of the topics which interested Poleni are seen from his correspondence with Jacopo Riccati who was also based in the Venetian region. This correspondence is reproduced in [4]. The two mathematicians discussed: the application of calculus to some controversial issues in dynamics; hydraulics; and administrative matters related to the regulation of waters in the Venetian region. The topics which Poleni taught at the University of Padua reflect his interests and the different chairs to which he was appointed. He taught physics when he was first appointed but taught mathematics after his appointment to the chair of mathematics in 1719. He observed a solar eclipse in 1724 and wrote a treatise on the topic which was published in the following year. From 1739 he taught experimental physics, since by this time he had available a physics laboratory. We shall look at this innovation in a little more detail.

In 1738 Poleni acquired a laboratory to conduct physics experiments: his Teatro di Filosofia Sperimentale. It was the first physics laboratory to be established in an Italian university. From the time he acquired the laboratory he sought to stock it with instruments. He collected about 400 mathematical, drawing and meteorological instruments over the following twenty years. Some were purchased but most were made in Venice or Padua to Poleni's own specifications. Around 100 of Poleni's instruments still survive and can be seen in a Museum at Padua. This laboratory gained Poleni international fame. He was elected to the Académie des Sciences in Paris in 1739. The Academy recognised that he had:-

... placed the School of Natural Philosophy in Padua on the same level as the most famous of its kind.

Jérôme Lalande described the laboratory, writing:-

I have never seen a more beautiful Physics Laboratory.

In 1741 Poleni published Institutionum philosophiae mechanicae specimen.

Pope Benedict XIV summoned Poleni to Rome in 1743 to see if he could solve the problem of the cupola of St Peter's which seemed to be near to collapsing. Together with the architect Luigi Vanvitelli he proposed fitting large iron rings to strengthen the dome. In fact the task was carried out with the aid of an instrument from Poleni's laboratory, a macchina divulsoria designed to determine the tensile strength of materials. The rings were fitted by 1748. As a consequence of this task, he published Memorie istoriche della gran cupola del Tempio Vaticano in 1748. (In fact the pope also accepted advice from Boscovich who made the same suggestion.)

Poleni was appointed to the chair of Nautical Studies and Naval Construction at Padua in 1756. From this time he taught nautical sciences and shipbuilding.

He was honoured by being proposed by Leibniz for election to the Berlin Academy of Science in 1715. His work was honoured by the award of a number of prizes: for calculating the distance travelled by a ship by the Academy of Sciences in 1733; for a study of ship's anchors also by the Academy of Sciences this time in 1736; and for a study of cranes and windlasses in 1741.

In addition to the many different interests we have indicated above [12]:-

Poleni's scientific activities were paralleled by classical researched, which were described in treatises on the temple of Ephesus, on ancient theatres and amphitheatres, on French archaeological findings, on an Augustan obelisk, and on several architectural topics.

We mention in particular Utriusque thesauri antiquitatum romanarum graecarumque nova supplementa (1737), and Exercitationes Vitruvianae primae, hoc est Ioannis Poleni Commentarius criticus de M Vitruvii Pollionis Architecti X (1739).

Another interest which gave him great pleasure was music.


 

  1. B A Boley, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830903465.html

Books:

  1. Giovanni Poleni (1683-1761) nel bicentenario della morte, Padova, 17 dicembre 1961 (Accademia Patavina di Scienze Lettere ed Arti, Padova, 1963).
  2. E de Tipaldo (ed.), Poleni, Biografia degli Italiani illustri (Venice, 1834).
  3. M L Soppelsa (ed.), J Riccati and G Poleni, Carteggio (1715-1742) (Leo S Olschki Editore, Florence, 1997).

Articles:

  1. A Cavallari-Murat, Giovanni Poleni e la costruzione architettonica, in Giovanni Poleni (1683-1761) nel bicentario della morte (Padova, 1963), 55-94.
  2. P G Franke, Marchese Giovanni Poleni (1683-1761), in G Garbrecht (ed.), Hydraulics and Hydraulic Research: A Historical Review (Rotterdam-Boston, 1987), 115-116.
  3. A Ghetti, Giovanni Poleni idraulico teorico, in Giovanni Poleni (1683-1761) nel bicentario della morte (Padova, 1963), 19-42.
  4. S Giuntini, The correspondence of Gabriele Manfredi and Giovanni Poleni (Italian), Boll. Storia Sci. Mat. 10 (1) (1990), 99-125.
  5. G Grioli, Giovanni Poleni matematico e astronomo, in Giovanni Poleni (1683-1761) nel bicentario della morte (Padova, 1963), 13-18.
  6. F Marzolo, Giovanni Poleni nell'iraulica applicata, in Giovanni Poleni (1683-1761) nel bicentario della morte (Padova, 1963), 43-54.
  7. G Passadore, Indice bibliografico Poleniano, in Giovanni Poleni (1683-1761) nel bicentario della morte (Padova, 1963), 95-118.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.