المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

علي بن عبيد اللّه
10-9-2016
إدارة الحوار ومقاطعة الشخصية
6-5-2022
اختلاف البنية الكونية قد يكون مقبولا، لكن هل يمكن أن تتباين قوانين الفيزياء؟
2023-03-18
معنى كلمة ثخن‌
15-11-2015
تصنيف نظم التحكم: دور الإنسان في التحكم
2023-08-23
العالم بلا عمل
28-8-2020


Thermionic emission  
  
745   01:08 صباحاً   التاريخ: 2024-06-03
المؤلف : Richard Feynman, Robert Leighton and Matthew Sands
الكتاب أو المصدر : The Feynman Lectures on Physics
الجزء والصفحة : Volume I, Chapter 42
القسم : علم الفيزياء / الفيزياء الكلاسيكية / الديناميكا الحرارية /

We may give another example of a very practical situation that is similar to the evaporation of a liquid—so similar that it is not worth making a separate analysis. It is essentially the same problem. In a radio tube there is a source of electrons, namely a heated tungsten filament, and a positively charged plate to attract the electrons. Any electron that escapes from the surface of the tungsten is immediately swept away to the plate. That is our ideal “pump,” which is “pumping” the electrons away all the time. Now the question is: How many electrons per second can we get out of a piece of tungsten, and how does that number vary with temperature? The answer to that problem is the same as (42.5), because it turns out that in a piece of metal, electrons are attracted to the ions, or to atoms, of the metal. They are attracted, if we may say it crudely, to the metal. In order to get an electron out of a piece of metal, it takes a certain amount of energy or work to pull it out. This work varies with the different kinds of metal. In fact, it varies even with the character of the surface of a given kind of metal, but the total work may be a few electron volts, which, incidentally, is typical of the energy involved in chemical reactions. We can remember the latter fact by remembering that the voltage in a chemical cell like a flashlight battery, which is produced by chemical reactions, is about one volt.

How can we find out how many electrons come out per second? It would be quite difficult to analyze the effects on the electrons going out; it is easier to analyze the situation the other way. So, we could start out by imagining that we did not draw the electrons away, and that the electrons were like a gas, and could come back to the metal. Then there would be a certain density of electrons at equilibrium which would, of course, be given by exactly the same formula as (42.1), where Va is the volume per electron in the metal, roughly, and W is equal to qeϕ, where ϕ is the so-called work function, or the voltage needed to pull an electron off the surface. This would tell us how many electrons would have to be in the surrounding space and striking the metal in order to balance the ones that are coming out.

And thus, it is easy to calculate how many are coming out if we sweep away all of them, because the number that are coming out is exactly equal to the number that would be going in with the above density of electron “vapor.” In other words, the answer is that the current of electricity that comes in per unit area is equal to the charge on each times the number that arrive per second per unit area, which is the number per unit volume times the velocity, as we have seen many times:

Now one electron volt corresponds to kT at a temperature of 11,600 degrees. The filament of the tube may be operating at a temperature of, say, 1100 degrees, so the exponential factor is something like e−10; when we change the temperature a little bit, the exponential factor changes a lot. Thus, again, the central feature of the formula is the e−qeϕ/kT. As a matter of fact, the factor in front is quite wrong—it turns out that the behavior of electrons in a metal is not correctly described by the classical theory, but by quantum mechanics, but this only changes the factor in front a little. Actually, no one has ever been able to get the thing straightened out very well, even though many people have used the high-class quantum-mechanical theory for their calculations. The big problem is, does W change slightly with temperature? If it does, one cannot distinguish a W changing slowly with temperature from a different coefficient in front. That is, if W changed linearly, say, with temperature, so that W=W0+αkT, then we would have

Thus a linearly temperature-dependent W is equivalent to a shifted “constant.” It is really quite difficult and usually fruitless to try to obtain the coefficient in the front accurately.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.