أقرأ أيضاً
التاريخ: 18-2-2016
9681
التاريخ: 2024-02-05
839
التاريخ: 28-12-2016
3118
التاريخ: 11-3-2021
1920
|
All we have done is to describe how the earth moves around the sun, but we have not said what makes it go. Newton made no hypotheses about this; he was satisfied to find what it did without getting into the machinery of it. No one has since given any machinery. It is characteristic of the physical laws that they have this abstract character. The law of conservation of energy is a theorem concerning quantities that have to be calculated and added together, with no mention of the machinery, and likewise the great laws of mechanics are quantitative mathematical laws for which no machinery is available. Why can we use mathematics to describe nature without a mechanism behind it? No one knows. We have to keep going because we find out more that way.
Many mechanisms for gravitation have been suggested. It is interesting to consider one of these, which many people have thought of from time to time. At first, one is quite excited and happy when he “discovers” it, but he soon finds that it is not correct. It was first discovered about 1750. Suppose there were many particles moving in space at a very high speed in all directions and being only slightly absorbed in going through matter. When they are absorbed, they give an impulse to the earth. However, since there are as many going one way as another, the impulses all balance. But when the sun is nearby, the particles coming toward the earth through the sun are partially absorbed, so fewer of them are coming from the sun than are coming from the other side. Therefore, the earth feels a net impulse toward the sun and it does not take one long to see that it is inversely as the square of the distance—because of the variation of the solid angle that the sun subtends as we vary the distance. What is wrong with that machinery? It involves some new consequences which are not true. This particular idea has the following trouble: the earth, in moving around the sun, would impinge on more particles which are coming from its forward side than from its hind side (when you run in the rain, the rain in your face is stronger than that on the back of your head!). Therefore, there would be more impulse given the earth from the front, and the earth would feel a resistance to motion and would be slowing up in its orbit. One can calculate how long it would take for the earth to stop as a result of this resistance, and it would not take long enough for the earth to still be in its orbit, so this mechanism does not work. No machinery has ever been invented that “explains” gravity without also predicting some other phenomenon that does not exist.
Next, we shall discuss the possible relation of gravitation to other forces. There is no explanation of gravitation in terms of other forces at the present time. It is not an aspect of electricity or anything like that, so we have no explanation. However, gravitation and other forces are very similar, and it is interesting to note analogies. For example, the force of electricity between two charged objects looks just like the law of gravitation: the force of electricity is a constant, with a minus sign, times the product of the charges, and varies inversely as the square of the distance. It is in the opposite direction—likes repel. But is it still not very remarkable that the two laws involve the same function of distance? Perhaps gravitation and electricity are much more closely related than we think. Many attempts have been made to unify them; the so-called unified field theory is only a very elegant attempt to combine electricity and gravitation; but, in comparing gravitation and electricity, the most interesting thing is the relative strengths of the forces. Any theory that contains them both must also deduce how strong the gravity is.
Fig. 7–14. The relative strengths of electrical and gravitational interactions between two electrons.
If we take, in some natural units, the repulsion of two electrons (nature’s universal charge) due to electricity, and the attraction of two electrons due to their masses, we can measure the ratio of electrical repulsion to the gravitational attraction. The ratio is independent of the distance and is a fundamental constant of nature. The ratio is shown in Fig. 7–14. The gravitational attraction relative to the electrical repulsion between two electrons is 1 divided by 4.17×1042! The question is, where does such a large number come from? It is not accidental, like the ratio of the volume of the earth to the volume of a flea. We have considered two natural aspects of the same thing, an electron. This fantastic number is a natural constant, so it involves something deep in nature. Where could such a tremendous number come from? Some say that we shall one day find the “universal equation,” and in it, one of the roots will be this number. It is very difficult to find an equation for which such a fantastic number is a natural root. Other possibilities have been thought of; one is to relate it to the age of the universe. Clearly, we have to find another large number somewhere. But do we mean the age of the universe in years? No, because years are not “natural”; they were devised by men. As an example of something natural, let us consider the time it takes light to go across a proton, 10−24 second. If we compare this time with the age of the universe, 2×1010 years, the answer is 10−42. It has about the same number of zeros going off it, so it has been proposed that the gravitational constant is related to the age of the universe. If that were the case, the gravitational constant would change with time, because as the universe got older the ratio of the age of the universe to the time which it takes for light to go across a proton would be gradually increasing. Is it possible that the gravitational constant is changing with time? Of course, the changes would be so small that it is quite difficult to be sure.
One test which we can think of is to determine what would have been the effect of the change during the past 109 years, which is approximately the age from the earliest life on the earth to now, and one-tenth of the age of the universe. In this time, the gravity constant would have increased by about 10 percent. It turns out that if we consider the structure of the sun—the balance between the weight of its material and the rate at which radiant energy is generated inside it—we can deduce that if the gravity were 10 percent stronger, the sun would be much more than 10 percent brighter—by the sixth power of the gravity constant! If we calculate what happens to the orbit of the earth when the gravity is changing, we find that the earth was then closer in. Altogether, the earth would be about 100 degrees centigrade hotter, and all of the water would not have been in the sea, but vapor in the air, so life would not have started in the sea. So we do not now believe that the gravity constant is changing with the age of the universe. But such arguments as the one we have just given are not very convincing, and the subject is not completely closed.
It is a fact that the force of gravitation is proportional to the mass, the quantity which is fundamentally a measure of inertia—of how hard it is to hold something which is going around in a circle. Therefore, two objects, one heavy and one light, going around a larger object in the same circle at the same speed because of gravity, will stay together because to go in a circle requires a force which is stronger for a bigger mass. That is, the gravity is stronger for a given mass in just the right proportion so that the two objects will go around together. If one object were inside the other it would stay inside; it is a perfect balance. Therefore, Gagarin or Titov would find things “weightless” inside a space ship; if they happened to let go of a piece of chalk, for example, it would go around the earth in exactly the same way as the whole space ship, and so it would appear to remain suspended before them in space. It is very interesting that this force is exactly proportional to the mass with great precision, because if it were not exactly proportional there would be some effect by which inertia and weight would differ. The absence of such an effect has been checked with great accuracy by an experiment done first by Eötvös in 1909 and more recently by Dicke. For all substances tried, the masses and weights are exactly proportional within 1 part in 1,000,000,000, or less. This is a remarkable experiment.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|