تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Hilbert Curve
المؤلف:
Bogomolny, A
المصدر:
"Plane Filling Curves." http://www.cut-the-knot.org/do_you_know/hilbert.shtml.
الجزء والصفحة:
...
21-9-2021
1100
Hilbert Curve
The Hilbert curve is a Lindenmayer system invented by Hilbert (1891) whose limit is a plane-filling function which fills a square. Traversing the polyhedron vertices of an -dimensional hypercube in Gray code order produces a generator for the
-dimensional Hilbert curve. The Hilbert curve can be simply encoded with initial string "L", string rewriting rules "L" -> "+RF-LFL-FR+", "R" -> "-LF+RFR+FL-", and angle
(Peitgen and Saupe 1988, p. 278). The
th iteration of this Hilbert curve is implemented in the Wolfram Language as HilbertCurve[n].
A related curve is the Hilbert II curve, shown above (Peitgen and Saupe 1988, p. 284). It is also a Lindenmayer system and the curve can be encoded with initial string "X", string rewriting rules "X" -> "XFYFX+F+YFXFY-F-XFYFX", "Y" -> "YFXFY-F-XFYFX+F+YFXFY", and angle . The
th iteration of this curve is implemented in the Wolfram Language as PeanoCurve[n].
A three-dimensional analog of the Hilbert curve can also be generated (Trott 2004, pp. 93-97).
REFERENCES:
Bogomolny, A. "Plane Filling Curves." http://www.cut-the-knot.org/do_you_know/hilbert.shtml.
Bogomolny, A. "All Peano Curves." http://www.cut-the-knot.org/Curriculum/Geometry/PeanoComplete.shtml.
Charpentier, M. "L-Systems in PostScript." http://www.cs.unh.edu/~charpov/Programming/L-systems/.
Dickau, R. M. "Two-Dimensional L-Systems." http://mathforum.org/advanced/robertd/lsys2d.html.
Dickau, R. M. "Three-Dimensional L-Systems." http://mathforum.org/advanced/robertd/lsys3d.html.
Goetz, P. "Phil Goetz's Complexity Dictionary." http://www.cs.buffalo.edu/~goetz/dict.html
Hilbert, D. "Über die stetige Abbildung einer Linie auf ein Flachenstück." Math. Ann. 38, 459-460, 1891.
Peitgen, H.-O. and Saupe, D. (Eds.). The Science of Fractal Images. New York: Springer-Verlag, pp. 278 and 284, 1988.
Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004. http://www.mathematicaguidebooks.org/.
Wagon, S. Mathematica in Action. New York: W. H. Freeman, pp. 198-206, 1991.
Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 100-101, 1991.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
