Read More
Date: 14-4-2021
![]()
Date: 19-2-2021
![]()
Date: 22-3-2021
![]() |
The th
-statistic
is the unique symmetric unbiased estimator of the cumulant
of a given statistical distribution, i.e.,
is defined so that
![]() |
(1) |
where denotes the expectation value of
(Kenney and Keeping 1951, p. 189; Rose and Smith 2002, p. 256). In addition, the variance
![]() |
(2) |
is a minimum compared to all other unbiased estimators (Halmos 1946; Rose and Smith 2002, p. 256). Most authors (e.g., Kenney and Keeping 1951, 1962) use the notation for
-statistics, while Rose and Smith (2002) prefer
.
The -statistics can be given in terms of the sums of the
th powers of the data points as
![]() |
(3) |
then
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
(Fisher 1928; Rose and Smith 2002, p. 256). These can be given by KStatistic[r] in the Mathematica application package mathStatica.
For a sample size , the first few
-statistics are given by
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
where is the sample mean,
is the sample variance, and
is the
th sample central moment (Kenney and Keeping 1951, pp. 109-110, 163-165, and 189; Kenney and Keeping 1962).
The variances of the first few -statistics are given by
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
An unbiased estimator for is given by
![]() |
(16) |
(Kenney and Keeping 1951, p. 189). In the special case of a normal parent population, an unbiased estimator for is given by
![]() |
(17) |
(Kenney and Keeping 1951, pp. 189-190).
For a finite population, let a sample size be taken from a population size
. Then unbiased estimators
for the population mean
,
for the population variance
,
for the population skewness
, and
for the population kurtosis excess
are
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
(Church 1926, p. 357; Carver 1930; Irwin and Kendall 1944; Kenney and Keeping 1951, p. 143), where is the sample skewness and
is the sample kurtosis excess.
REFERENCES:
Carver, H. C. (Ed.). "Fundamentals of the Theory of Sampling." Ann. Math. Stat. 1, 101-121, 1930.
Church, A. E. R. "On the Means and Squared Standard-Deviations of Small Samples from Any Population." Biometrika 18, 321-394, 1926.
Fisher, R. A. "Moments and Product Moments of Sampling Distributions." Proc. London Math. Soc. 30, 199-238, 1928.
Halmos, P. R. "The Theory of Unbiased Estimation." Ann. Math. Stat. 17, 34-43, 1946.
Irwin, J. O. and Kendall, M. G. "Sampling Moments of Moments for a Finite Population." Ann. Eugenics 12, 138-142, 1944.
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, 1951.
Kenney, J. F. and Keeping, E. S. "The -Statistics." §7.9 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 99-100, 1962.
Rose, C. and Smith, M. D. "k-Statistics: Unbiased Estimators of Cumulants." §7.2C in Mathematical Statistics with Mathematica. New York: Springer-Verlag, pp. 256-259, 2002.
Stuart, A.; and Ord, J. K. Kendall's Advanced Theory of Statistics, Vol. 2A: Classical Inference & the Linear Model, 6th ed. New York: Oxford University Press, 1999.
Ziaud-Din, M. "Expression of the k-Statistics and
in Terms of Power Sums and Sample Moments." Ann. Math. Stat. 25, 800-803, 1954.
Ziaud-Din, M. "The Expression of -Statistic
in Terms of Power Sums and Sample Moments." Ann. Math. Stat. 30, 825-828, 1959.
Ziaud-Din, M. and Ahmad, M. "On the Expression of the -Statistic
in Terms of Power Sums and Sample Moments." Bull. Internat. Stat. Inst. 38, 635-640, 1960.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
العتبة العباسية المقدسة تستعد لإطلاق الحفل المركزي لتخرج طلبة الجامعات العراقية
|
|
|