المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
من هم المحسنين؟
2024-11-23
ما هي المغفرة؟
2024-11-23
{ليس لك من الامر شيء}
2024-11-23
سبب غزوة أحد
2024-11-23
خير أئمة
2024-11-23
يجوز ان يشترك في الاضحية اكثر من واحد
2024-11-23


Transcendental Number  
  
2865   03:06 مساءً   date: 3-2-2021
Author : Allouche, J.-P. and Cosnard, M
Book or Source : "The Komornik-Loreti Constant Is Transcendental." Amer. Math. Monthly 107
Page and Part : ...


Read More
Date: 25-8-2020 804
Date: 26-7-2020 726
Date: 12-1-2020 845

Transcendental Number

A transcendental number is a (possibly complex) number that is not the root of any integer polynomial, meaning that it is not an algebraic number of any degree. Every real transcendental number must also be irrational, since a rational number is, by definition, an algebraic number of degree one.

A complex number z can be tested to see if it is transcendental using the Wolfram Language command Not[Element[xAlgebraics]].

Transcendental numbers are important in the history of mathematics because their investigation provided the first proof that circle squaring, one of the geometric problems of antiquity that had baffled mathematicians for more than 2000 years was, in fact, insoluble. Specifically, in order for a number to be produced by a geometric construction using the ancient Greek rules, it must be either rational or a very special kind of algebraic number known as a Euclidean number. Because the number pi is transcendental, the construction cannot be done according to the Greek rules.

Liouville showed how to construct special cases (such as Liouville's constant) using Liouville's approximation theorem. In particular, he showed that any number that has a rapidly converging sequence of rational approximations must be transcendental. For many years, it was only known how to determine if special classes of numbers were transcendental. The determination of the status of more general numbers was considered an important enough unsolved problem that it was one of Hilbert's problems.

Great progress was subsequently made by Gelfond's theorem, which gives a general rule for determining if special cases of numbers of the form alpha^beta are transcendental. Baker produced a further revolution by proving the transcendence of sums of numbers of the form alphalnbeta for algebraic numbers alpha and beta.

The number e was proven to be transcendental by Hermite in 1873, and pi (pi) by Lindemann in 1882. Gelfond's constant e^pi is transcendental by Gelfond's theorem since

 (-1)^(-i)=(e^(ipi))^(-i)=e^pi.

The Gelfond-Schneider constant 2^(sqrt(2)) is also transcendental (Hardy and Wright 1979, p. 162).

Known transcendentals are summarized in the following table, where sinx is the sine function, J_0(x) is a Bessel function of the first kind, x_k^((n)) is the nth zero of J_k(x)P_1 is the Thue-Morse constant, P_2 is the universal parabolic constant, Omega_U is Chaitin's constant, Gamma(x) is the gamma function, and zeta(n) is the Riemann zeta function.

transcendental number reference
Chaitin's constant Omega_U  
Champernowne constant  
e Hermite (1873)
e^(pisqrt(d))d in Z^+ Nesterenko (1999)
Gelfond's constant e^pi Gelfond
Gelfond-Schneider constant 2^(sqrt(2)) Hardy and Wright (1979, p. 162)
exponential factorial inverse sum S J. Sondow, pers. comm., Jan. 10, 2003
Gamma(1/3) Le Lionnais (1983, p. 46)
Gamma(1/4) Chudnovsky (1984, p. 308), Waldschmidt, Nesterenko (1999)
Gamma(1/6) Chudnovsky (1984, p. 308)
Gamma(1/4)pi^(-1/4) Davis (1959)
J_0(1) Hardy and Wright (1979, p. 162)
J_0(x) smallest root, 2.4048255... Le Lionnais (1983, p. 46)
Komornik-Loreti constant Allouche and Cosnard (2000)
Liouville's constant L Liouville (1850)
ln2 Hardy and Wright (1979, p. 162)
ln3/ln2 Hardy and Wright (1979, p. 162),
pi Lindemann (1882)
pi+ln2+sqrt(2)ln3 Borwein et al. (1989)
Plouffe's constant tan^(-1)(1/2)/pi Smith 2003, Margolius
sin1 Hardy and Wright (1979, p. 162)
(tan^(-1)x)/pi for x rational and x!=0,+/-1 Margolius
Thue-Morse constant 0.4124540336... Dekking (1977), Allouche and Shallit
Thue constant  
universal parabolic constant sqrt(2)+ln(1+sqrt(2))  

Apéry's constant zeta(3) has been proved to be irrational, but it is not known if it is transcendental. At least one of pie and pi+e (and probably both) are transcendental, but transcendence has not been proven for either number on its own. It is not known if e^epi^pipi^egamma (the Euler-Mascheroni constant), I_0(2), or I_1(2) (where I_n(x) is a modified Bessel function of the first kind) are transcendental.

There are still many fundamental and outstanding problems in transcendental number theory, including the constant problem and Schanuel's conjecture.


REFERENCES:

Allouche, J. P. and Shallit, J. In preparation.

Allouche, J.-P. and Cosnard, M. "The Komornik-Loreti Constant Is Transcendental." Amer. Math. Monthly 107, 448-449, 2000.

Bailey, D. H. and Crandall, R. E. "Random Generators and Normal Numbers." Exper. Math. 11, 527-546, 2002.

Baker, A. "Approximations to the Logarithm of Certain Rational Numbers." Acta Arith. 10, 315-323, 1964.

Baker, A. "Linear Forms in the Logarithms of Algebraic Numbers I." Mathematika 13, 204-216, 1966.

Baker, A. "Linear Forms in the Logarithms of Algebraic Numbers II." Mathematika 14, 102-107, 1966.

Baker, A. "Linear Forms in the Logarithms of Algebraic Numbers III." Mathematika 14, 220-228, 1966.

Baker, A. "Linear Forms in the Logarithms of Algebraic Numbers IV." Mathematika 15, 204-216, 1966.

Borwein, J. M.; Borwein, P. B.; and Bailey, D. H. "Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi." Amer. Math. Monthly 96, 201-219, 1989.

Chudnovsky, G. V. Contributions to the Theory of Transcendental Numbers. Providence, RI: Amer. Math. Soc., 1984.

Courant, R. and Robbins, H. "Algebraic and Transcendental Numbers." §2.6 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 103-107, 1996.

Davis, P. J. "Leonhard Euler's Integral: A Historical Profile of the Gamma Function." Amer. Math. Monthly 66, 849-869, 1959.

Dekking, F. M. "Transcendence du nombre de Thue-Morse." C. R. Acad. Sci. Paris 285, 157-160, 1977.

Gourdon, X. and Sebah, P. "Transcendental Numbers." §3 in "Classification of Numbers: Overview." https://numbers.computation.free.fr/Constants/Miscellaneous/classification.html.

Gray, R. "Georg Cantor and Transcendental Numbers." Amer. Math. Monthly 101, 819-832, 1994.

Hardy, G. H. and Wright, E. M. "Algebraic and Transcendental Numbers," "The Existence of Transcendental Numbers," and "Liouville's Theorem and the Construction of Transcendental Numbers." §11.5-11.6 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Oxford University Press, pp. 159-164, 1979.

Hermite, C. "Sur la fonction exponentielle." C. R. Acad. Sci. Paris 77, 18-24, 74-79, and 226-233, 1873.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 46, 1979.

Lindemann, F. "Über die Zahl pi." Math. Ann. 20, 213-225, 1882.

Liouville, J. "Sur des classes très-étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationelles algébriques." J. Math. pures appl. 15, 133-142, 1850.

Margolius, B. H. "Plouffe's Constant Is Transcendental." https://www.lacim.uqam.ca/~plouffe/articles/plouffe.pdf.

Nagell, T. Introduction to Number Theory. New York: Wiley, p. 35, 1951.

Nesterenko, Yu. V. "On Algebraic Independence of the Components of Solutions of a System of Linear Differential Equations." Izv. Akad. Nauk SSSR, Ser. Mat. 38, 495-512, 1974. English translation in Math. USSR 8, 501-518, 1974.

Nesterenko, Yu. V. "Modular Functions and Transcendence Questions." [Russian.] Mat. Sbornik 187, 65-96, 1996. English translation in Sbornik Math. 187, 1319-1348, 1996.

Nesterenko, Yu. V. A Course on Algebraic Independence: Lectures at IHP 1999. Unpublished manuscript. 1999.

Pickover, C. A. "The Fifteen Most Famous Transcendental Numbers." J. Recr. Math. 25, 12, 1993.

Ramachandra, K. Lectures on Transcendental Numbers. Madras, India: Ramanujan Institute, 1969.

Shidlovskii, A. B. Transcendental Numbers. New York: de Gruyter, 1989.

Siegel, C. L. Transcendental Numbers. New York: Chelsea, 1965.

Smith, W. D. "Pythagorean Triples, Rational Angles, and Space-Filling Simplices." 2003. https://math.temple.edu/~wds/homepage/diophant.pdf.

Tijdeman, R. "An Auxiliary Result in the Theory of Transcendental Numbers." J. Numb. Th. 5, 80-94, 1973.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.