المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الضوء
2025-04-10
البلازما والفضاء
2025-04-10
الكون المتحرك
2025-04-10
الفيزياء والكون .. البلازما
2025-04-10
الفيزياء والكون.. الذرة
2025-04-10
D-dimer (Fragment D-dimer, Fibrin degradation product [FDP], Fibrin split products)
2025-04-10

متذبذب سمعي audio-frequency oscillator
5-12-2017
مرض الكوكسيديا في الدواجن Coccidia Disease
14-9-2017
نصب الغنم
29-11-2015
double-bar (adj./n.)
2023-08-17
الاتصال الهابط
24-6-2016
اساليب التربية المحظورة كما يراها الاسلام
28-7-2017

Somer-Lucas Pseudoprime  
  
846   03:19 مساءً   date: 25-1-2021
Author : Ribenboim, P.
Book or Source : "Somer-Lucas Pseudoprimes." §2.X.D in The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag
Page and Part : pp. 131-132


Read More
Date: 20-7-2020 2373
Date: 5-12-2020 784
Date: 31-10-2019 931

Somer-Lucas Pseudoprime

An odd composite number N is called a Somer-Lucas d-pseudoprime (with d>=1) if there exists a nondegenerate Lucas sequence U(P,Q) with U_0=0U_1=1D=P^2-4Q, such that (N,D)=1 and the rank appearance of N in the sequence U(P,Q) is (1/a)(N-(D/N)), where (D/N) denotes the Jacobi symbol.


REFERENCES:

Ribenboim, P. "Somer-Lucas Pseudoprimes." §2.X.D in The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag, pp. 131-132, 1996.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.