المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9764 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
اليمين واقسامه واحكامه
2024-10-06
النذر والعهد واليمين
2024-10-06
الخمس وموارده
2024-10-06
الانفال
2024-10-06
كفارة حلق الرأس
2024-10-06
كفارة جزاء الصيد
2024-10-06

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
الجملة الإنشائية وأقسامها
26-03-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016

Ramanujan Prime  
  
475   03:35 مساءً   date: 8-10-2020
Author : Ramanujan, S.
Book or Source : Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc
Page and Part : ...


Read More
Date: 23-1-2021 579
Date: 26-5-2020 1300
Date: 12-1-2021 1095

Ramanujan Prime

The nth Ramanujan prime is the smallest number R_n such that pi(x)-pi(x/2)>=n for all x>=R_n, where pi(x) is the prime counting function. In other words, there are at least n primes between x/2 and x whenever x>=R_n. The smallest such number R_n must be prime, since the function pi(x)-pi(x/2) can increase only at a prime.

Equivalently,

 R_n=1+max_(k){k:pi(k)-pi(1/2k)=n-1}.

Using simple properties of the gamma function, Ramanujan (1919) gave a new proof of Bertrand's postulate. Then he proved the generalization that pi(x)-pi(x/2)>=1, 2, 3, 4, 5, ... if x>=2, 11, 17, 29, 41, ... (OEIS A104272), respectively. These are the first few Ramanujan primes.

The case pi(x)-pi(x/2)>=1 for all x>=2 is Bertrand's postulate.


REFERENCES:

Ramanujan, S. Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., pp. 208-209, 2000.

Ramanujan, S. "A Proof of Bertrand's Postulate." J. Indian Math. Soc. 11, 181-182, 1919.

Sloane, N. J. A. Sequence A104272 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.