Read More
Date: 4-3-2020
807
Date: 14-12-2019
946
Date: 24-5-2020
619
|
Finch (2010) gives an overview of known results for random Gaussian triangles.
Let the vertices of a triangle in dimensions be normal (normal) variates. The probability that a Gaussian triangle in dimensions is obtuse is
(1) |
|||
(2) |
|||
(3) |
|||
(4) |
|||
(5) |
where is the gamma function, is the hypergeometric function, and is an incomplete beta function.
For even ,
(6) |
(Eisenberg and Sullivan 1996).
The first few cases are explicitly
(7) |
|||
(8) |
|||
(9) |
|||
(10) |
(OEIS A102519 and A102520). The even cases are therefore 3/4, 15/32, 159/512, 867/4096, ... (OEIS A102556 and A102557) and the odd cases are , where , 9/8, 27/20, 837/560, ... (OEIS A102558 and A102559).
REFERENCES:
Eisenberg, B. and Sullivan, R. "Random Triangles Dimensions." Amer. Math. Monthly 103, 308-318, 1996.
Finch, S. "Random Triangles." http://algo.inria.fr/csolve/rtg.pdf. Jan. 21, 2010.
Sloane, N. J. A. Sequences A102519, A102520, A102556, A102557, A102558, and A102559 in "The On-Line Encyclopedia of Integer Sequences."
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|