المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
من هم المحسنين؟
2024-11-23
ما هي المغفرة؟
2024-11-23
{ليس لك من الامر شيء}
2024-11-23
سبب غزوة أحد
2024-11-23
خير أئمة
2024-11-23
يجوز ان يشترك في الاضحية اكثر من واحد
2024-11-23

بيان معنى (الضابط) لغةً واصطلاحًا.
2024-11-23
عقائد الدّروز
27-05-2015
Reactor temperature
27-4-2017
الشمس والقمر بالأرقام
23-11-2014
جغرافية النقل - تطور الدراسة
31-7-2022
معايير التقييم التي تتحكم بثقافة المجتمع
5-10-2014

Synthetic Division  
  
898   03:40 مساءً   date: 21-11-2019
Author : Fan, L.
Book or Source : "A Generalization of Synthetic Division and a General Theorem of Division of Polynomials." Mathematical Medley 30, 30-37, 2003....
Page and Part : ...


Read More
Date: 16-11-2020 2209
Date: 21-11-2019 576
Date: 20-1-2021 1042

Synthetic Division

Synthetic division is a shortcut method for dividing two polynomials which can be used in place of the standard long division algorithm. This method reduces the dividend and divisor polynomials into a set of numeric values. After these values are processed, the resulting set of numeric outputs is used to construct the polynomial quotient and the polynomial remainder.

For an example of synthetic division, consider dividing 4x^5+x^3-3x^2+2x-7 by 2x^3-x+1. First, if a power of x is missing from either polynomial, a term with that power and a zero coefficient must be inserted into the correct position in the respective polynomial. In this case the x^4 term is missing from the dividend while the x^2 term is missing from the divisor; therefore, 0x^4 is added between the quintic and the cubic terms of the dividend while 0x^2 is added between the cubic and the linear terms of the divisor:

 4x^5+0x^4+x^3-3x^2+2x-7,

(1)

and

 2x^3+0x^2-x+1,

(2)

respectively.

Next, all the variables and their exponents (x^5,x^4,...,x) are removed from the dividend, leaving instead a list consisting solely of its coefficients: 401-32, and -7. This sequence of numbers is placed into a division-like configuration:

SyntheticDivisionExtended01

Variables are then similarly removed from the divisor, yielding a sequence 20-1, and 1. Because the divisor fails to be monic, one must keep track of the leading coefficient (2 in this case); after doing so, the divisor's leading coefficient is discarded and the signs of its remaining coefficients are "reversed," thereby leaving a "modified sequence" of 01, and -1 corresponding to the divisor. This modified sequence, along with the leading coefficient, are filled into the above-shown division-like configuration as follows:

SyntheticDivisionExtended02

The first number in the dividend (4 in this case) is put into the first position of the first result area (i.e., the first row below the horizontal line). This number is the coefficient of the x^5 term in the original dividend polynomial:

SyntheticDivisionExtended03

At this point, it is imperative that the leading coefficient of the divisor be recognized; before continuing, the first number of the dividend (4) must be divided by this leading coefficient (2), the result of which (4/2=2) will be recorded into the first position of the second result area (i.e., the second row below the horizontal line). This number is "modified coefficient" of the x^5 term in the original dividend after it is been divided by the leading coefficient of the divisor:

SyntheticDivisionExtended04

Now, the first entry in this latest result (2) is multiplied by each element of the coefficient sequence from the divisor (01, and -1), the products of which are placed diagonally under the next dividend terms as follows:

SyntheticDivisionExtended05

As the algorithm progresses, the numbers from the dividend are added systematically to the results of the multiplications performed; in particular, this addition happens when the resulting product element is directly above the horizontal line. The result of the addition is placed on the first result line:

SyntheticDivisionExtended06

At this point, the process essentially repeats: The last-dropped number from the first result line (0 in this case) is divided by the leading coefficient of the divisor (2) to yield a number (0/2=0 here) placed on the second result line:

SyntheticDivisionExtended07

This result (0) is multiplied by the left-hand divisor sequence (01, and -1) to yield products (00, and 0) which are placed diagonally under the subsequent dividend terms:

SyntheticDivisionExtended08

Next comes addition along the subsequent column (the x^3 dividend column, here consisting of 12, and 0), the result of which (1+2+0=3 in this case) is divided by the leading divisor coefficient (2) to yield a result of 3/2:

SyntheticDivisionExtended09

Finally, the process repeats: 3/2 is multiplied by the sequence 01-1 to yield the sequence 03/2-3/2 which again is placed diagonally beneath the corresponding dividend terms:

SyntheticDivisionExtended10

Adding the subsequent column (the x^2 dividend column consisting of -3-200) yields a result (namely, -5), and because any subsequent collections of products would consist of more numbers (namely, 3 numbers, one for each of the three left-hand sequence numbers) than there are dividend terms remaining (there are two such terms, namely the x-coefficient of 2 and the constant, -7), no additional products are required. Hence, this result (5) need not be divided by the leading divisor coefficient (2), whereby the remaining columns may be summed without division. This final step can be diagrammed as follows:

SyntheticDivisionExtended11

The result is the list of six numbers (the leftmost three from the second result row and the rightmost three from the first result row), namely

 2,  0,  3/2,  -5,  7/2,  -(17)/2.

(3)

In order to determine which of these numbers become the coefficients of the quotient polynomial, first determine how many numbers were in the left-hand sequence. Because this sequence consists of three numbers (namely, 01, and -1), the first three numbers (namely 20, and 3/2) of the sequence (3) will be coefficients of the quotient polynomial q(x), a polynomial which will be quadratic due to the fact that a quintic was divided by a cubic. Hence, the quotient polynomial has the form:

 q(x)=2x^2+0x+3/2=2x^2+3/2.

(4)

Moreover, the remaining numbers (namely, -57/2, and -17/2) of (3) correspond to the coefficients of the remainder polynomial r(x); here,

 r(x)=-5x^2+7/2x-(17)/2.

(5)

The quotient and remainder can be combined into a single expression:

 2x^2+3/2+(-5x^2+7/2x-17/2)/(2x^3-x+1).

(6)

Note, too, that the only division operations performed during this computation consisted of dividing entries from the first result row by the leading divisor coefficient 2, whereby it follows that the quotient (6) was computed after performing only three divisions.

Unsurprisingly, this process can be verified:

(2x^2+3/2)×(2x^3-x+1) = 4x^5+x^3+2x^2-3/2x+3/2

(7)

(4x^5+x^3+2x^2-3/2x+3/2)+(-5x^2+7/2x-(17)/2) = 4x^5+x^3-3x^2+2x-7.

(8)

In particular, multiplying the quotient by the divisor and adding the remainder yields the original dividend polynomial, thus confirming the validity of the result.

The process described above is perhaps the most general case of synthetic division of univariate polynomials; as such, it is sometimes referred to as generalized synthetic division, expanded synthetic division, or generalized expanded synthetic division. Although confusing, the special case in which the divisor is a monic polynomial of arbitrary degree (no more than the degree of the dividend) is sometimes referred to as expanded synthetic division, while the case most often referred to by the unqualified term "synthetic division" consists of a monic linear divisor and is more formally referred to as Ruffini's Rule.


REFERENCES:

Fan, L. "A Generalization of Synthetic Division and a General Theorem of Division of Polynomials." Mathematical Medley 30, 30-37, 2003. http://eprints.soton.ac.uk/168861/1/FLH_article_on_polynomial_division.pdf.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.