Read More
Date: 16-5-2018
![]()
Date: 29-6-2019
![]()
Date: 21-5-2019
![]() |
Polynomials which form the Sheffer sequence for
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
and have generating function
![]() |
(3) |
The are given in terms of the hypergeometric series by
![]() |
(4) |
where is the Pochhammer symbol (Koepf 1998, p. 115). The first few are
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
(7) |
Koekoek and Swarttouw (1998) defined the Meixner polynomials without the Pochhammer symbol as
![]() |
(8) |
The Krawtchouk polynomials are a special case of the Meixner polynomials of the first kind.
REFERENCES:
Chihara, T. S. An Introduction to Orthogonal Polynomials. New York: Gordon and Breach, p. 175, 1978.
Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 2. New York: Krieger, pp. 224-225, 1981.
Koekoek, R. and Swarttouw, R. F. "Meixner." §1.9 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its -Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 45-46, 1998.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, p. 115, 1998.
Roman, S. The Umbral Calculus. New York: Academic Press, 1984.
Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., p. 35, 1975.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
العتبة العباسية المقدسة تستعد لإطلاق الحفل المركزي لتخرج طلبة الجامعات العراقية
|
|
|