Read More
Date: 8-8-2019
![]()
Date: 21-9-2018
![]()
Date: 22-8-2019
![]() |
For all integers and nonnegative integers
, the harmonic logarithms
of order
and degree
are defined as the unique functions satisfying
1. ,
2. has no constant term except
,
3. ,
where the "Roman symbol" is defined by
![]() |
(1) |
(Roman 1992). This gives the special cases
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
where is a harmonic number. The harmonic logarithm has the integral
![]() |
(4) |
The harmonic logarithm can be written
![]() |
(5) |
where is the differential operator, (so
is the
th integral). Rearranging gives
![]() |
(6) |
This formulation gives an analog of the binomial theorem called the logarithmic binomial theorem. Another expression for the harmonic logarithm is
![]() |
(7) |
where is a Pochhammer symbol and
is a two-index harmonic number (Roman 1992).
REFERENCES:
Loeb, D. and Rota, G.-C. "Formal Power Series of Logarithmic Type." Advances Math. 75, 1-118, 1989.
Roman, S. "The Logarithmic Binomial Formula." Amer. Math. Monthly 99, 641-648, 1992.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|