Read More
Date: 8-9-2019
1755
Date: 16-8-2018
1779
Date: 31-7-2019
1211
|
Denote the th derivative and the -fold integral . Then
(1) |
Now, if the equation
(2) |
for the multiple integral is true for , then
(3) |
|||
(4) |
Interchanging the order of integration gives
(5) |
But (3) is true for , so it is also true for all by induction. The fractional integral of of order can then be defined by
(6) |
where is the gamma function.
More generally, the Riemann-Liouville operator of fractional integration is defined as
(7) |
for with (Oldham and Spanier 1974, Miller and Ross 1993, Srivastava and Saxena 2001, Saxena 2002).
The fractional integral of order 1/2 is called a semi-integral.
Few functions have a fractional integral expressible in terms of elementary functions. Exceptions include
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
where is a lower incomplete gamma function and is the Et-function. From (10), the fractional integral of the constant function is given by
(12) |
|||
(13) |
A fractional derivative can also be similarly defined. The study of fractional derivatives and integrals is called fractional calculus.
REFERENCES:
Miller, K. S. and Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley, 1993.
Oldham, K. B. and Spanier, J. The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. New York: Academic Press, 1974.
Samko, S. G.; Kilbas, A. A.; and Marichev, O. I. Fractional Integrals and Derivatives. Yverdon, Switzerland: Gordon and Breach, 1993.
Saxena, R. K.; Mathai, A. M.; and Haubold, H. J. "On Fractional Kinetic Equations." 23 Jun 2002. http://arxiv.org/abs/math.CA/0206240.
Srivastava, H. M. and Saxena, R. K. "Operators of Fractional Integration and Their Applications." Appl. Math. and Comput. 118, 1-52, 2001.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|