Read More
Date: 21-8-2019
![]()
Date: 25-7-2019
![]()
Date: 20-9-2019
![]() |
The directional derivative is the rate at which the function
changes at a point
in the direction
. It is a vector form of the usual derivative, and can be defined as
![]() |
![]() |
![]() |
(1)
|
![]() |
![]() |
![]() |
(2)
|
where is called "nabla" or "del" and
denotes a unit vector.
The directional derivative is also often written in the notation
![]() |
![]() |
![]() |
(3)
|
![]() |
![]() |
![]() |
(4)
|
where denotes a unit vector in any given direction and
denotes a partial derivative.
Let be a unit vector in Cartesian coordinates, so
![]() |
(5)
|
then
REFERENCES: Kaplan, W. "The Directional Derivative." §2.14 in Advanced Calculus, 4th ed. Reading, MA: Addison-Wesley, pp. 135-138, 1991. Morse, P. M. and Feshbach, H. "Directional Derivatives." In Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 32-33, 1953. |
|
|
لخفض ضغط الدم.. دراسة تحدد "تمارين مهمة"
|
|
|
|
|
طال انتظارها.. ميزة جديدة من "واتساب" تعزز الخصوصية
|
|
|
|
|
عوائل الشهداء: العتبة العباسية المقدسة سبّاقة في استذكار شهداء العراق عبر فعالياتها وأنشطتها المختلفة
|
|
|