

علم الكيمياء

تاريخ الكيمياء والعلماء المشاهير

التحاضير والتجارب الكيميائية

المخاطر والوقاية في الكيمياء

اخرى

مقالات متنوعة في علم الكيمياء

كيمياء عامة


الكيمياء التحليلية

مواضيع عامة في الكيمياء التحليلية

التحليل النوعي والكمي

التحليل الآلي (الطيفي)

طرق الفصل والتنقية


الكيمياء الحياتية

مواضيع عامة في الكيمياء الحياتية

الكاربوهيدرات

الاحماض الامينية والبروتينات

الانزيمات

الدهون

الاحماض النووية

الفيتامينات والمرافقات الانزيمية

الهرمونات


الكيمياء العضوية

مواضيع عامة في الكيمياء العضوية

الهايدروكاربونات

المركبات الوسطية وميكانيكيات التفاعلات العضوية

التشخيص العضوي

تجارب وتفاعلات في الكيمياء العضوية


الكيمياء الفيزيائية

مواضيع عامة في الكيمياء الفيزيائية

الكيمياء الحرارية

حركية التفاعلات الكيميائية

الكيمياء الكهربائية


الكيمياء اللاعضوية

مواضيع عامة في الكيمياء اللاعضوية

الجدول الدوري وخواص العناصر

نظريات التآصر الكيميائي

كيمياء العناصر الانتقالية ومركباتها المعقدة


مواضيع اخرى في الكيمياء

كيمياء النانو

الكيمياء السريرية

الكيمياء الطبية والدوائية

كيمياء الاغذية والنواتج الطبيعية

الكيمياء الجنائية


الكيمياء الصناعية

البترو كيمياويات

الكيمياء الخضراء

كيمياء البيئة

كيمياء البوليمرات

مواضيع عامة في الكيمياء الصناعية

الكيمياء الاشعاعية والنووية
Anionic Polymerization of Aldehydes
المؤلف:
A. Ravve
المصدر:
Principles of Polymer Chemistry
الجزء والصفحة:
p223-226
2026-01-22
72
Anionic Polymerization of Aldehydes
Many patents describe polymerizations of anhydrous formaldehyde by anionic mechanism. The initiators included amines, phosphines, and metal alcoholates. Kern pictured initiations of formaldehyde polymerizations by tertiary amines as direct addition reactions [332, 334]:
R3N+CH2O → R3NR — CH2 — OR
Earlier, however, Machacek suggested [335-337] that the initiations take place with the help of protonic impurities:
Much of the evidence presented since favors the Machacek mechanism of initiation [335]. By contrast, tertiary phosphines apparently do initiate such polymerizations by a zwitter ion mechanism [338]. This may, perhaps, be due to higher nucleophilicity and lower basicity than that of the tertiary amines. Phosphorus incorporates into the polymer [338] in the process.
The propagation reactions in tertiary amine initiated polymerizations can be pictured as follows [339]:
The terminations, probably, result from chain transferring [241]:
The newly formed active species can initiate new polymerizations. Metal alkyls and metal alcoholates are very effective anionic initiators for higher aldehydes. Aldol condensation can occur, however, in the presence of strong bases. Thus, while some such initiators yield high molecular weight polymers from formaldehyde, they only yield low molecular weight polymers from higher aldehydes. Initiations by metal alkyls result from additions to the carbonyl group:
Where, Me represents a metal group. The propagation reaction is a series of successive nucleo- philic additions [340], with the alkoxide ion as the propagating species:
There are indications that many aldehyde polymerizations result in formations of "living" polymers similarly to anionic polymerizations of vinyl compounds. Termination can occur through hydride transfer via a form of a crossed Cannizzaro reaction:
The alkyl substituent has a tendency to destabilize the propagating anion by increasing the charge density on the oxygen:
As a result, weak bases, like amines, fail to initiate polymerizations of higher aldehydes. A stereospecific anionic polymerization of acetaldehyde was originally reported in 1960 [343, 344]. Two alkali metal compounds [341] and an organozinc [342] one were used as the initiators. Trialkylaluminum and triarylaluminum in heptane also yield crystalline, isotactic polymers from acetaldehyde, heptaldehyde, and propionaldehyde at -80°C [343]. Aluminum oxide, activated by diethylzinc, yields stereoblock crystalline polymers from various aldehydes [342, 344]. Lithium alkoxide formed polyacetaldehyde is insoluble in common solvents. It melts at 165°C [341].
The mechanism of stereoregulation is still debated. Some concepts are presented in the rest of this section. Natta [343] believed that polymerizations initiated by organoaluminum compounds proceed by coordinated anionic mechanism. The aluminum atoms were seen as forming complexes with the oxygen atoms on the penultimate units:
The activated complexes, which form, have steric configurations that allow minimum amounts of non- bonded interactions. Other mechanisms were proposed since. For instance, Furukawa et al. [344] concluded that metal alkyl compounds must become metal alkoxides through reactions with the aldehydes:
His polymerization mechanism, therefore, is based on known reactions of metal alkoxides with carbonyl compounds. Side reactions, like a Meerwein-Ponndorf or a Tischenko, should be expected and were included into the reaction scheme:
Each monomer addition to the growing chain requires a transfer of the alkoxide anion to the carbonyl group. This results in a formation of a new alkoxide anion. (A hydride transfer from the alkoxide group to the carbon atom of the aldehyde can take place by the Meerwein-Ponndorf reduction.) Chain growth takes place by repetition of the coordination of the aldehyde, and subsequent transfer of the alkoxide anion. In the Vogl and Bryant [345] mechanism, four oxygens are coordinated to the metal atom. These oxygens are from the penultimate and ultimate units of the growing chains and from two monomers:
A simultaneous coordination of the two aldehydes prior to addition may explain the observed sequence of isotactic dyads. Yashida and Tani derived their mechanism from investigations of isotactic aldehyde polymerizations by [R2AlOCR0NC6H5] catalysts [346–348]. The bulkiness of the substituent group is considered to be the most important factor in steric control. The catalyst enhances the degree of stereo regulation by controlling the mode of approach through coordination. Also, the Lewis acidity of the catalyst must be confined to a narrow range for each particular aldehyde to yield isotactic polymers [347, 348]. If the acidity is too strong, an amorphous polymer forms. If it is too weak, no polymerization takes place [348]. In addition, special techniques, like high pressures, for instance, can result in formations of isotactic butyraldehyde and heptaldehyde [349].
الاكثر قراءة في كيمياء البوليمرات
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)