النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
Embryonic Origin of Hematopoietic Stem Cells
المؤلف:
Hoffman, R., Benz, E. J., Silberstein, L. E., Heslop, H., Weitz, J., & Salama, M. E.
المصدر:
Hematology : Basic Principles and Practice
الجزء والصفحة:
8th E , P95-96
2025-08-10
40
Mammalian hematopoiesis occurs in several waves, which are separated temporally and spatially and produce different cell types: a transient first “primitive” is followed by a “prodefinitive” and then a “definitive” wave, which persists through life.[1-3]While most of the evidence is derived from the mouse, data from humans, albeit limited, point to a very comparable hematopoietic program.[4,5]
During embryogenesis, the hematopoietic cells of the first, primitive wave are formed when cells from the epiblast that constitute the prospective mesoderm ingress and migrate through the primitive streak between the endoderm and ectoderm, both in the embryo proper and in the extraembryonic yolk sac (YS). In the latter, mesodermal cells aggregate to form blood islands surrounded by visceral endodermal cells on mouse embryonic day (E) 7 to 7.5. The close proximity of erythroid cells and vascular endothelium in YS blood islands, their origin from mesoderm, and their simultaneous differentiation led to the proposal of a common precursor, the hemangioblast, over a century ago.[6,7] In support of this hypothesis, a spontaneous zebrafish mutant, cloche (named for its bell-shaped heart because of the loss of endothelium), lacks both vasculature and hematopoietic cells but no other mesodermal lineages such as cardiac progenitors.[8,9] The gene mutated in cloche was recently cloned and encodes a PAS (PER-ARNT-SIM) domain–containing basic helix-loop-helix (bHLH) transcription factor (npas4l), which belongs to the same class that also includes the aryl hydrocarbon receptor and hypoxia-induced factor (HIF)-1α.[9a] Also, mice lacking FLK1 (VEGFR2, a receptor for vascular endothelial growth factor), expressed on endothelial (progenitor) cells, fail to develop both vascular endothelium and blood islands during embryogenesis.[10,11] Indeed, gene tracing studies in mouse and human embryonic stem cell cultures have identified a progenitor with both hematopoietic and endothelial potential.[12-14]
Primitive hematopoiesis encompasses the generation of primarily large erythroid cells and primitive macrophages.[15-17] Following this initial wave, beginning at mouse E8.25, erythromyeloid progenitors (EMPs) are generated as prodefinitive progenitors.[18,19] Both waves arise transiently in the YS during a time comparable to the first trimester in humans,[20] but the cells lack the capacity for self-renewal and multilineage differentiation present in definitive HSCs. The emergence of EMPs during development is presaged by ckit+ EMP precursors that are characterized by the expression of toll-like receptor 2 (TLR2) at E7.5.[21] Three lineage-tracing studies recently demonstrated that embryonic erythropoiesis is sustained completely by YS EMPs, rather than HSC-derived progenitors.[22] Remarkably, Hoxa neg/low Kit+CD41+CD16/32+ HSC-independent EMPs from the YS have also been shown to give rise to NK cells with cytotoxic capability,[23] and YS EMPs produce osteoclast precursor cells that create space for post-natal BM hematopoiesis.[24,25] Interestingly, epidermal γδ T cells, also known as dendritic epidermal T cells, function in the adult epidermis, and are also derived from YS progenitors.[26] Utilizing single cell transcriptomic analysis and single cell cultures of YS-derived myeloid progenitors, Bian et al. recently provided a comprehensive characterization of the spatiotemporal dynamics of early macrophage development from YS progenitors during embryo genesis.[27] This study provides unprecedented insight into the distinct biology of tissue resident macrophages that are derived from YS progenitors. Importantly, Stremmel et al.[28] day 8.5 through day 12.5 via the bloodstream into embryonic tissues where they take up long-term residence.
Definitive HSCs capable of long-term (LT), multilineage reconstitution of irradiated adult recipient mice appear at E10.5 in the intraembryonic region encompassing the aorta, gonads, and mesonephros (AGM), in particular in hematopoietic intra-aortic clusters in the ventral wall of the dorsal aorta.[3,29-31] Then, within a remark ably short period of 1.5 days during embryonic development, virtually all HSCs are generated that will replenish the hematopoietic system throughout fetal and adult life.[32-33] Studies by Ganuza et al.[34] utilizing cultured 2 to 7 somite pairs (sp) murine embryonic explants and 2 to 7 sp YS explants confirmed that the embryo, not the YS, is the source of definitive HSCs. Several complementary studies using lineage tracing experiments in both mice and zebrafish have demonstrated that within the dorsal aorta, hemogenic endothelial cells (ECs) are the direct precursors of definitive HSCs.[33,35-39] In a process known as endothelial-to-hematopoietic transition (EHT), HSCs bud off the hemogenic endothelium to form intra-aortic hematopoietic clusters from which they are released into circulation. Interestingly, while the AGM gives rise to HSCs, it is not the site of hematopoietic differentiation.[40] Rather, HSCs colonize the fetal liver where they expand and then differentiate (Ref. [41] and references therein).
Recent advances in single cell labeling and single cell transcriptomic analysis has allowed the isolation and characterization of a population of “pre-HSCs” during murine development.[42] CD45+ pre-HSCs in the AGM were shown to have a unique molecular signature and activation of mechanistic target of rapamycin (mTOR) was reported to be indispensable for the emergence of HSCs.[41] Separate studies which evaluated ex vivo maturation of HSCs from pre-HSCs showed that ex vivo matured HSCs and fetal liver HSCs express programmed death ligand 1 (PDL1), among other immune response genes, although PDL1 expression was not required for engraftment of embryonic HSCs.[43]
Evidence from studies in mice suggests that some definitive hematopoiesis also occurs at sites other than the AGM. By E12 the fetal liver contains more HSCs than can be accounted for by HSCs generated in the AGM alone.[44] Quantitative analysis of HSC distribution showed that both YS[44] and placenta [45,46]generate definitive HSCs that migrate to the liver and other hematopoietic sites.[47] Lastly, a c-Myb- and thus HSC-independent cell lineage that emerges between E8.5 and E9.5 in the YS has recently been shown to give rise to YS macrophages and later on to tissue macrophages in brain (microglia), liver (Kupffer cells), and skin (Langerhans cells).[48]
Human induced pluripotent stem cell models and studies of zebrafish have suggested that a population of immune precursors may originate directly from hemogenic endothelium rather than HSCs.[49,50] Utilizing a RAG1:GFP human reporter system, Motazedian et al.[50] showed that early RAG1+ cells could differentiate into CD4+CD8+ T cells, also possessed B-cell, myeloid, and erythroid potential, while also expressing endothelial markers, and resided within CD31+ endothelial structures. The authors concluded that a wave of T-cell development might originate directly from hemogenic endothelium via a RAG1+ intermediate population.[50] Utilizing a novel technique called “ScarTrace,” a single cell sequencing strategy to quantify the clonal history and cell type of thousands of cells in different organs of the developing zebrafish, Alemany et al.[51] identified a novel population of immune cells in the zebrafish fin that had a distinct clonal origin from other hematopoietic cells. In keeping with these studies, Tian et al.[49] utilized temporal-spatial fate mapping analysis and time-lapse imaging to show that a wave of T lymphopoiesis could be detected in the developing zebrafish, arising from ventral endothelium in the AGM and posterior blood islands. This generation of CD4+ T cells is transient and occurs only in the early larval stage, and is later replaced by HSC-dependent T cells of all subtypes.[49] Taken together, these studies provide the impetus for further exploration of evidence for HSC-independent immune cell generation during mammalian development.[52]
References
--------------
[1] Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132:631–644. https://doi.org/10.1016/j. cell.2008.01.025.
[2] Golub R, Cumano A. Embryonic hematopoiesis. Blood Cells Mol Dis. 2013;51:226–231. https://doi.org/10.1016/j.bcmd.2013.08.004.
[3] Dzierzak E, Speck NA. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol. 2008;9:129–136. https://doi.org/10.1038/ni1560.
[4] Galloway JL, Zon LI. Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo. Curr Top Dev Biol. 2003;53:139–158.
[5] Ivanovs A, Rybtsov S, Welch L, et al. Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. J Exp Med. 2011;208:2417–2427. https://doi.org/10.1084/ jem.20111688.
[6] His W. Lecithoblast und Angioblast der Wirbeltiere. Abhandl Math-Phys Ges Wiss. 1900;26:171–328.
[7] Murray PDF. The development in vitro of the blood of the early chick embryo. Proc R Soc Lond [Biol]. 1932;111:497–521. https://doi. org/10.1098/rspb.1932.0070.
[8] Stainier DY, Weinstein BM, Detrich HW, et al. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development. 1995;121:3141–3150. https://doi.org/10.1242/ dev.121.10.3141.
[9] Vogeli KM, Jin SW, Martin GR, et al. A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature. 2006;443:337–339. https://doi.org/10.1038/nature05045.
[9a] Reischauer S, Stone OA, Villasenor A, et al. Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification. Nature. 2016;535:294–298. https://doi.org/10.1038/nature18614.
[10] Shalaby F, Ho J, Stanford WL, et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell. 1997;89:981–990. https://doi.org/10.1016/s0092-8674(00)80283-4.
[11] Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376:62–66. https://doi.org/10.1038/376062a0.
[12] Choi K, Kennedy M, Kazarov A, et al. A common precursor for hematopoietic and endothelial cells. Development. 1998;125:725–732. https://doi.org/10.1242/dev.125.4.725.
[13] Kennedy M, Firpo M, Choi K, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature. 1997;386:488–493. https://doi.org/10.1038/386488a0.
[14] Zambidis ET, Peault B, Park TS, et al. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood. 2005;106:860–870. https://doi.org/10.1182/ blood-2004-11-4522.
[15] Kingsley PD, Malik J, Fantauzzo KA, et al. Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood. 2004;104:19–25. https://doi.org/10.1182/blood-2003-12-4162.
[16] Tober J, Koniski A, McGrath KE, et al. The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood. 2007;109:1433–1441. https://doi.org/10.1182/blood-2006-06-031898.
[17] Wong PM, Chung SW, Chui DH, et al. Properties of the earliest clonogenic hemopoietic precursors to appear in the developing murine yolk sac. Proc Natl Acad Sci USA. 1986;83:3851–3854.
[18] Palis J, Robertson S, Kennedy M, et al. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development. 1999;126:5073–5084.
[19] McGrath KE, Frame JM, Fegan KH, et al. Distinct sources of hematopoietic progenitors emerge before hscs and provide functional blood cells in the mammalian embryo. Cell Rep. 2015;11:1892–1904. https://doi. org/10.1016/j.celrep.2015.05.036.
[20] Van Handel B, Prashad SL, Hassanzadeh-Kiabi N, et al. The first trimester human placenta is a site for terminal maturation of primitive erythroid cells. Blood. 2010;116:3321–3330. https://doi.org/10.1182/ blood-2010-04-279489.
[21] Balounova J, Splichalova I, Dobesova M, et al. Toll-like receptor 2 expression on c-kit + cells tracks the emergence of embryonic definitive hematopoietic progenitors. Nature. 2019;10:5176. https://doi.org/10.1038/ s41467-019-13150-0.
[22] Soares-da-Silva F, Freyer L, Elsaid R, et al. Yolk sac, but not hematopoietic stem cell-derived progenitors, sustain erythropoiesis throughout murine embryonic life. J Exp Med. 2021;218:20201729. https://doi.org/10.1084/ jem.20201729.
[23] Dege C, Fegan K, Creamer J, et al. Potently cytotoxic natural killer cells initially emerge from erythro-myeloid progenitors during mammalian development. Dev Cell. 2020;53:229–239. https://doi.org/10.1016/j. devcel.2020.02.016.
[24] Yahara Y, Barrientos T, Tang Y, et al. Erythromyeloid progenitors give rise to a population of osteoclasts that contribute to bone homeostasis and repair. Nat Cell Biol. 2020;22:49–59. https://doi.org/10.1038/s41556-019 0437-8.
[25] Jacome-Galarza C, Percin G, Muller J, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568:541–545. https://doi.org/10.1038/s41586-019-1105-7.
[26] Gentek R, Ghigo C, Hoeffel G, et al. Epidermal γδ T cells originate from yolk sac hematopoiesis and clonally self-renew in the adult. J Exp Med. 2018;215:2994–3005. https://doi.org/10.1084/jem.20181206.
[27] Bian Z, Gong Y, Huang T, et al. Deciphering human macrophage development at single-cell resolution. Nature. 2020;582:571–576. https:// doi.org/10.1038/s41586-020-2316-7.
[28] Stremmel C, Schuchert R, Wagner F, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Comm. 2018;9:75. https://doi.org/10.1038/s41467-017-02492-2.
[29] Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86:897–906.
[30] Medvinsky AL, Samoylina NL, Muller AM, et al. An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature. 1993;364:64–67. https://doi.org/10.1038/364064a0.
[31] Muller AM, Medvinsky A, Strouboulis J, et al. Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1994;1:291–301. https://doi.org/10.1016/1074-7613(94)90081-7.
[32] Samokhvalov IM, Samokhvalova NI, Nishikawa S. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature. 2007;446:1056–1061. https://doi.org/10.1038/nature05725.
[33] Zovein AC, Hofmann JJ, Lynch M, et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell. 2008;3:625–636. https:// doi.org/10.1016/j.stem.2008.09.018.
[34] Ganuza M, Chabot A, Tang X, et al. Murine hematopoietic stem cell activity is derived from pre-circulation embryos but not yolk sacs. Nat Commun. 2018;9:5405.https://doi.org/10.1038/s41467-018-07769-8.
[35] Bertrand JY, Chi NC, Santoso B, et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature. 2010;464:108–111. https://doi.org/10.1038/nature08738.
[36] Boisset JC, van Cappellen W, Andrieu-Soler C, et al. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature. 2010;464:116–120. https://doi.org/10.1038/nature08764.
[37] Kissa K, Herbomel P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature. 2010;464:112–115. https://doi. org/10.1038/nature08761.
[38] Jaffredo T, Gautier R, Eichmann A, et al. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development. 1998;125:4575–4583. https://doi.org/10.1242/dev.125.22.4575.
[39] Eilken HM, Nishikawa S, Schroeder T. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature. 2009;457:896 900. https://doi.org/10.1038/nature07760.
[40] Godin I, Garcia-Porrero JA, Dieterlen-Lievre F, et al. Stem cell emergence and hemopoietic activity are incompatible in mouse intraembryonic sites. J Exp Med. 1999;190:43–52. https://doi.org/10.1084/jem.190.1.43.
[41] Delassus S, Cumano A. Circulation of hematopoietic progenitors in the mouse embryo. Immunity. 1996;4:97–106. https://doi.org/10.1016/s1074 7613(00)80302-7.
[42] Zhou F, Li Z, Wang W, et al. Tracing haematopoietic stem cell formation at single cell resolution. Nature. 2016;533:487–492. https://doi.org/10.1038/ nature17997.
[43] Tober J, Maijenburg M, Li Y, et al. Maturation of hematopoietic stem cells from prehematopoietic stem cells is accompanied by up-regulation of PD L1. J Exp Med. 2018;215:645–659. https://doi.org/10.1084/jem.20161594.
[44] Kumaravelu P, Hook L, Morrison AM, et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development. 2002;129:4891–4899. https://doi.org/10.1242/dev.129.21.4891.
[45] Gekas C, Dieterlen-Lievre F, Orkin SH, et al. The placenta is a niche for hematopoietic stem cells. Dev Cell. 2005;8:365–375. https://doi. org/10.1016/j.devcel.2004.12.016.
[46] Ottersbach K, Dzierzak E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell. 2005;8:377–387. https://doi.org/10.1016/j.devcel.2005.02.001.
[47] Li Z, Lan Y, He W, et al. Mouse embryonic head as a site for hematopoietic stem cell development. Cell Stem Cell. 2012;11:663–675. https://doi. org/10.1016/j.stem.2012.07.004.
[48] Schulz C, Gomez Perdiguero E, Chorro L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336:86 90. https://doi.org/10.1126/science.1219179.
[49] Tian Y, Xu J, Feng S, et al. The first wave of T lymphopoiesis in zebrafish arises from aorta endotherlium independent of hematopoietic stem cells. J Exp Med. 2017;214:3347–3360. https://doi.org/10.1084/jem.20170488.
[50] Motazedian A, Bruveris F, Kumar S, et al. Multipotent RAG1+ progenitors emerge directly from haemogenic endothelium in human pluripotent stem cell-derived haematopoietic organoids. Nat Cell Biol. 2020;22:60–73. https://doi.org/10.1038/s41556-019-0445-8.
[51] Alemany A, Florescu M, Baron C, et al. Whole-organism clone tracing using single-cell sequencing. Nature. 2018;556:108–112. https://doi. org/10.1038/nature25989.
[52] Park M, Kumar A, Jung HS, et al. Activation of the arterial program drives development of definitive hemogenic endothelium with lymphoid potential. Cell Rep. 2018;23:2467–2481. https://doi.org/10.1016/j. celrep.2018.04.092.
الاكثر قراءة في مواضيع متنوعة أخرى
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
