Rearrangements occur when a participating group ends up bonded to a different atom
المؤلف:
Jonathan Clayden , Nick Greeves , Stuart Warren
المصدر:
ORGANIC CHEMISTRY
الجزء والصفحة:
ص937-938
2025-07-24
547
Rearrangements occur when a participating group ends up bonded to a different atom
Because the intermediates in these examples are symmetrical, 50% of the time one substituent ends up moving from one carbon atom to another during the reaction. This is clearer in the following example: the starting material is prepared such that the carbon atom carrying the phenyl group is an unusual isotope—carbon-14. This doesn’t affect the chemistry, but means that the two carbon atoms are easily distinguishable. Reacting the compound with trifluoro acetic acid scrambles the label between the two positions: the intermediate is symmetrical and, in the 50% of reactions with the nucleophile that take place at the labelled carbon atom, the phenyl ends up migrating to the unlabelled carbon atom in a rearrangement reaction.

Now, consider this substitution reaction, in which OH replaces Cl but with a change in the molecular structure. The substitution goes with complete rearrangement—the amine ends up attached to a different carbon atom. We can easily see why if we look at the mechanism. The reaction starts off looking like a neighbouring group participation of the sort you are now familiar with (the carbon atoms are numbered for identifi cation).

The intermediate is an aziridinium ion (aziridines are three-membered rings containing nitrogen—the nitrogen analogues of epoxides). The hydroxide ion chooses to attack only the less hindered terminal carbon 1, and a rearrangement results—the amine has migrated from carbon 1 to carbon 2.

We should just pause here for a moment to consider why this rearrangement works. We start with a secondary alkyl chloride that contains a very bad leaving group (Et2N) and a good one (Cl−)—but the good one is hard for HO− to displace because it is at a secondary centre (remember—secondary alkyl halides are slow to react by SN1 or SN2). But the NEt2 can participate to make an aziridinium intermediate—now there is a good leaving group (RNEt2 without the negative charge) at the primary as well as the secondary carbon, so HO− does a fast SN2 reaction at the primary carbon.

Another way to look at this reaction is to see that the good internal nucleophile Et2N will compete successfully for the electrophile with the external nucleophile HO−. Intramolecular reactions are usually faster than bimolecular reactions.
●Intramolecular reactions (including participation of a neighbouring group) that give three-, five-, or six-membered rings are usually faster than intermolecular reactions.
الاكثر قراءة في مواضيع عامة في الكيمياء العضوية
اخر الاخبار
اخبار العتبة العباسية المقدسة