علم الكيمياء
تاريخ الكيمياء والعلماء المشاهير
التحاضير والتجارب الكيميائية
المخاطر والوقاية في الكيمياء
اخرى
مقالات متنوعة في علم الكيمياء
كيمياء عامة
الكيمياء التحليلية
مواضيع عامة في الكيمياء التحليلية
التحليل النوعي والكمي
التحليل الآلي (الطيفي)
طرق الفصل والتنقية
الكيمياء الحياتية
مواضيع عامة في الكيمياء الحياتية
الكاربوهيدرات
الاحماض الامينية والبروتينات
الانزيمات
الدهون
الاحماض النووية
الفيتامينات والمرافقات الانزيمية
الهرمونات
الكيمياء العضوية
مواضيع عامة في الكيمياء العضوية
الهايدروكاربونات
المركبات الوسطية وميكانيكيات التفاعلات العضوية
التشخيص العضوي
تجارب وتفاعلات في الكيمياء العضوية
الكيمياء الفيزيائية
مواضيع عامة في الكيمياء الفيزيائية
الكيمياء الحرارية
حركية التفاعلات الكيميائية
الكيمياء الكهربائية
الكيمياء اللاعضوية
مواضيع عامة في الكيمياء اللاعضوية
الجدول الدوري وخواص العناصر
نظريات التآصر الكيميائي
كيمياء العناصر الانتقالية ومركباتها المعقدة
مواضيع اخرى في الكيمياء
كيمياء النانو
الكيمياء السريرية
الكيمياء الطبية والدوائية
كيمياء الاغذية والنواتج الطبيعية
الكيمياء الجنائية
الكيمياء الصناعية
البترو كيمياويات
الكيمياء الخضراء
كيمياء البيئة
كيمياء البوليمرات
مواضيع عامة في الكيمياء الصناعية
الكيمياء الاشعاعية والنووية
The Alder ‘ene’ reaction
المؤلف:
Jonathan Clayden , Nick Greeves , Stuart Warren
المصدر:
ORGANIC CHEMISTRY
الجزء والصفحة:
ص894-896
2025-07-23
106
The Alder ‘ene’ reaction
The Diels–Alder reaction was originally called the ‘diene reaction’ so, when half of the famous team (Kurt Alder) discovered an analogous reaction that requires only one alkene, it was called the Alder ene reaction and the name has stuck. Compare here the Diels–Alder and the Alder ene reactions.
The simplest way to look at the ene reaction is to picture it as a Diels–Alder reaction in which one of the double bonds in the diene has been replaced by a C–H bond (green). The reaction does not form a new ring, the product has only one new C–C bond (shown in black on the product), and a hydrogen atom is transferred across space. Otherwise, the two reactions are remarkably similar. The ene reaction is rather different in orbital terms. For the Woodward–Hoffmann description of the reaction we must use the two electrons of the C–H bond to replace the two electrons of the double bond in the Diels–Alder reaction, but we must make sure that all the orbitals are parallel, as shown. The C–H bond is parallel with the p orbitals of the ene so that the orbitals that overlap to form the new π bond are already parallel. The two molecules approach one another in parallel planes so that the orbitals that overlap to form the new σ bonds are already pointing towards each other. Because the electrons are of two types, π and σ, we must divide the ene into two components, one π2 and one σ2. We can then have an all-suprafacial reaction with three components. All three components are of the (4q + 2)s type so all count and the total is three—an odd number—so the reaction is allowed. We have skipped the step-by-step approach we used for the Diels–Alder reaction because the two are so similar, but you should convince yourself that you can apply it here. Now for some real examples. Most ene reactions with simple alkenes are with maleic anhydride. Other dienophiles—or enophiles as we should call them in this context—do not work very well. However, with one particular alkene, the natural pine tree terpene β-pinene, a reaction does occur with enophiles such as acrylates.
The major interaction between these two molecules is between the nucleophilic end of the exocyclic alkene and the electrophilic end of the acrylate. These atoms have the largest coefficients in the HOMO and LUMO, respectively, and, in the transition state, bond formation between these two will be more advanced than anywhere else. For most ordinary alkenes and enophiles, Lewis acid catalysis to make the enophile more electrophilic, or an intramolecular reaction (or both!), is necessary for an efficient ene reaction.
The ‘ene’ component is delivered to the bottom face of the enone, as its tether is too short for it to reach the top face, and a cis ring junction is formed. The stereochemistry of the third centre is most easily seen by a Newman projection (Chapter 16) of the reaction. In the diagram in the margin we are looking straight down the new C–C bond and the colour coding should help you to see how the stereochemistry follows.
Since the twin roles of the enophile are to be attacked at one end by a C=C double bond and at the other by a proton, a carbonyl group is actually a very good enophile. These reactions are usually called ‘carbonyl ene’ reactions. The important interaction is between the HOMO of the ene system and the LUMO of the carbonyl group—and a Lewis-acid catalyst can lower the energy of the LUMO still fur ther. If there is a choice, the more electrophilic carbonyl group (the one with the lower LUMO) reacts.
It may not be obvious that an ene reaction has occurred because of the symmetry of the alkene. The double bond in the product is not, in fact, in the same place as it was in the start ing material, as the mechanism shows. One carbonyl ene reaction is of commercial importance as it is part of a process for the pro duction of menthol used to give a peppermint smell and taste to many products. This is an intramolecular ene reaction on another terpene derivative.
It is not obvious what has happened in the fi rst step, but the movement of the alkene and the closure of the ring with the formation of one (not two) new C–C bonds should give you the clue that this is a Lewis-acid-catalysed carbonyl ene reaction. The stereochemistry comes from an all-chair arrangement in the conformation of the transition state. The methyl group will adopt an equatorial position in this conformation, fixing the way the other bonds are formed. Again, colour coding should make it clearer what has happened.
الاكثر قراءة في مواضيع عامة في الكيمياء العضوية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
