علم الكيمياء
تاريخ الكيمياء والعلماء المشاهير
التحاضير والتجارب الكيميائية
المخاطر والوقاية في الكيمياء
اخرى
مقالات متنوعة في علم الكيمياء
كيمياء عامة
الكيمياء التحليلية
مواضيع عامة في الكيمياء التحليلية
التحليل النوعي والكمي
التحليل الآلي (الطيفي)
طرق الفصل والتنقية
الكيمياء الحياتية
مواضيع عامة في الكيمياء الحياتية
الكاربوهيدرات
الاحماض الامينية والبروتينات
الانزيمات
الدهون
الاحماض النووية
الفيتامينات والمرافقات الانزيمية
الهرمونات
الكيمياء العضوية
مواضيع عامة في الكيمياء العضوية
الهايدروكاربونات
المركبات الوسطية وميكانيكيات التفاعلات العضوية
التشخيص العضوي
تجارب وتفاعلات في الكيمياء العضوية
الكيمياء الفيزيائية
مواضيع عامة في الكيمياء الفيزيائية
الكيمياء الحرارية
حركية التفاعلات الكيميائية
الكيمياء الكهربائية
الكيمياء اللاعضوية
مواضيع عامة في الكيمياء اللاعضوية
الجدول الدوري وخواص العناصر
نظريات التآصر الكيميائي
كيمياء العناصر الانتقالية ومركباتها المعقدة
مواضيع اخرى في الكيمياء
كيمياء النانو
الكيمياء السريرية
الكيمياء الطبية والدوائية
كيمياء الاغذية والنواتج الطبيعية
الكيمياء الجنائية
الكيمياء الصناعية
البترو كيمياويات
الكيمياء الخضراء
كيمياء البيئة
كيمياء البوليمرات
مواضيع عامة في الكيمياء الصناعية
الكيمياء الاشعاعية والنووية
The structure and synthesis of penaresidin
المؤلف:
Jonathan Clayden , Nick Greeves , Stuart Warren
المصدر:
ORGANIC CHEMISTRY
الجزء والصفحة:
ص873-874
2025-07-21
136
The structure and synthesis of penaresidin
Our last example is a natural product called penaresidin A. It was isolated from a Japanese sponge in 1991, and is now known to have the structure shown below. When it was first dis covered, it proved difficult to find out the stereochemistry and, in particular, the relative stereochemistry between the two remotely related groups of chiral centres was not initially known.
What is sure is the relative stereochemistry around the four-membered azetidine ring:
What is also certain is that natural penarisi din A is enantiomerically pure. What Mori and his co-workers set out to do was to make, using unambiguous stereoselective methods, the possible diastereoisomers of penaresidin A to dis cover which was the same as the natural product. The challenge of constructing the three chiral centres at the left-hand end of the molecule can be solved by taking just one of them from a natural source—in this case the amino acid L-serine. The amino group of serine was protected as the Boc derivative, and the hydroxyl and amino groups condensed with the dimethoxyacetal of acetone to form a five-membered ring. Now the free ester could be reduced with LiBH4 and oxidized to the aldehyde by the Swern method.
How will this aldehyde react with nucleophiles such as lithiated alkynes? Consider a Felkin Anh transition state: again, we know that the substituted nitrogen atom, being electronegative and bulky, will lie perpendicular to the carbonyl group in the most reactive conformation. Looking at the two alternatives shown below, it’s easy to see that the one on the right allows unhindered attack, and in the synthesis an alkynyl anion was used to make the product shown.
The alkyne was then reduced to an E alkene by a dissolving metal reduction, a step which also hydrolysed the five-membered heterocycle. The next step, an epoxidation, is needed to install the third of the chiral centres at the left-hand end of penarisidine. However, hydrogen bond directed epoxidation of this allylic alcohol would be expected to give the syn product shown, which has the wrong relative stereochemistry between the brown OH group and the epoxide.
The solution is to use a large blocking group to prevent this brown OH group hydrogen bonding to the m-CPBA. The t-butyldimethylsilyl group (TBDMS) is the best, and when both OH groups are protected, some of the right diastereoisomer is formed by attack of m-CPBA on the top face of the alkene. Reduction of the epoxide with DIBAL (i-Bu2AlH) now gives the correct diastereoisomer.
To close the ring, the green hydroxyl group was converted to a good leaving group, mesylate (MeSO3−), ready for an attack by the nitrogen with inversion on treatment with base. Make sure you can see how inversion at this centre gives the stereochemistry shown! The chemists knew at this stage they were on the right track with regard to relative stereochemistry because the NMR spectrum of structures containing any long alkyl chain R were very similar to that of the natural compound.
الاكثر قراءة في مواضيع عامة في الكيمياء العضوية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
