

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Linear Programming
المؤلف:
Bellman, R. and Kalaba, R
المصدر:
Dynamic Programming and Modern Control Theory. New York: Academic Press, 1965.
الجزء والصفحة:
...
18-12-2021
1141
Linear Programming
Linear programming, sometimes known as linear optimization, is the problem of maximizing or minimizing a linear function over a convex polyhedron specified by linear and non-negativity constraints. Simplistically, linear programming is the optimization of an outcome based on some set of constraints using a linear mathematical model.
Linear programming is implemented in the Wolfram Language as LinearProgramming[c, m, b], which finds a vector
which minimizes the quantity
subject to the constraints
and
for
.
Linear programming theory falls within convex optimization theory and is also considered to be an important part of operations research. Linear programming is extensively used in business and economics, but may also be used to solve certain engineering problems.
Examples from economics include Leontief's input-output model, the determination of shadow prices, etc., an example of a business application would be maximizing profit in a factory that manufactures a number of different products from the same raw material using the same resources, and example engineering applications include Chebyshev approximation and the design of structures (e.g., limit analysis of a planar truss).
Linear programming can be solved using the simplex method (Wood and Dantzig 1949, Dantzig 1949) which runs along polytope edges of the visualization solid to find the best answer. Khachian (1979) found a
polynomial time algorithm. A much more efficient polynomial time algorithm was found by Karmarkar (1984). This method goes through the middle of the solid (making it a so-called interior point method), and then transforms and warps. Arguably, interior point methods were known as early as the 1960s in the form of the barrier function methods, but the media hype accompanying Karmarkar's announcement led to these methods receiving a great deal of attention.
Linear programming in which variables may take on integer values only is known as integer programming.
In the Season 4 opening episode "Trust Metric" (2007) of the television crime drama NUMB3RS, math genius Charlie Eppes uses the phrase "you don't need Karmarkar's algorithm" to mean "you don't need to be a rocket scientist to know...."
REFERENCES:
Bellman, R. and Kalaba, R. Dynamic Programming and Modern Control Theory. New York: Academic Press, 1965.
Dantzig, G. B. "Programming of Interdependent Activities. II. Mathematical Model." Econometrica 17, 200-211, 1949.
Dantzig, G. B. Linear Programming and Extensions. Princeton, NJ: Princeton University Press, 1963.
Garey, M. R. and Johnson, D. S. Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W. H. Freeman, pp. 155-158, 287-288, and 339, 1983.
Greenberg, H. J. "Mathematical Programming Glossary." http://carbon.cudenver.edu/~hgreenbe/glossary/.
Karloff, H. Linear Programming. Boston, MA: Birkhäuser, 1991.
Khachian, L. G. "A Polynomial Algorithm in Linear Programming." Dokl. Akad. Nauk SSSR 244, 1093-1096, 1979. English translation in Soviet Math. Dokl. 20, 191-194, 1979.
Karmarkar, N. "A New Polynomial-Time Algorithm for Linear Programming." Combinatorica 4, 373-395, 1984.
Pappas, T. "Projective Geometry & Linear Programming." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 216-217, 1989.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Linear Programming and the Simplex Method." §10.8 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 423-436, 1992.
Sultan, A. Linear Programming: An Introduction with Applications. San Diego, CA: Academic Press, 1993.
Tokhomirov, V. M. "The Evolution of Methods of Convex Optimization." Amer. Math. Monthly 103, 65-71, 1996.
Weisstein, E. W. "Books about Linear Programming." http://www.ericweisstein.com/encyclopedias/books/LinearProgramming.html.
Wood, M. K. and Dantzig, G. B. "Programming of Interdependent Activities. I. General Discussion." Econometrica 17, 193-199, 1949.
Yudin, D. B. and Nemirovsky, A. S. Problem Complexity and Method Efficiency in Optimization. New York: Wiley, 1983.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)