تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Bézier Curve
المؤلف:
Bartels, R. H.; Beatty, J. C.; and Barsky, B. A
المصدر:
"Bézier Curves." Ch. 10 in An Introduction to Splines for Use in Computer Graphics and Geometric Modelling. San Francisco, CA: Morgan Kaufmann
الجزء والصفحة:
...
18-11-2021
973
Bézier Curve
Given a set of control points
,
, ...,
, the corresponding Bézier curve (or Bernstein-Bézier curve) is given by
![]() |
where is a Bernstein polynomial and
. Bézier splines are implemented in the Wolfram Language as BezierCurve[pts].
A "rational" Bézier curve is defined by
![]() |
where is the order,
are the Bernstein polynomials,
are control points, and the weight
of
is the last ordinate of the homogeneous point
. These curves are closed under perspective transformations, and can represent conic sections exactly.
The Bézier curve always passes through the first and last control points and lies within the convex hull of the control points. The curve is tangent to and
at the endpoints. The "variation diminishing property" of these curves is that no line can have more intersections with a Bézier curve than with the curve obtained by joining consecutive points with straight line segments. A desirable property of these curves is that the curve can be translated and rotated by performing these operations on the control points.
Undesirable properties of Bézier curves are their numerical instability for large numbers of control points, and the fact that moving a single control point changes the global shape of the curve. The former is sometimes avoided by smoothly patching together low-order Bézier curves. A generalization of the Bézier curve is the B-spline.
REFERENCES:
Bartels, R. H.; Beatty, J. C.; and Barsky, B. A. "Bézier Curves." Ch. 10 in An Introduction to Splines for Use in Computer Graphics and Geometric Modelling. San Francisco, CA: Morgan Kaufmann, pp. 211-245, 1998.
Piegl, L. Fundamental Developments of Computer Aided Geometric Design. San Diego, CA: Academic Press, 1993.
Shene, C.-K. "Introduction to Computing with Geometry Notes. Unit 5: Bézier Curves." http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
